• 제목/요약/키워드: fiber bragg grating

검색결과 418건 처리시간 0.021초

광섬유 브레그격자 센서를 이용한 풍력발전기 날개의 모드 해석 (Modal Analysis of Wind Turbine Blade Using Optical-Fiber Bragg-Grating Sensors)

  • 김창환;백인수;유능수;남윤수
    • 대한기계학회논문집B
    • /
    • 제35권5호
    • /
    • pp.513-516
    • /
    • 2011
  • 소형 풍력발전기 날개의 동적 거동에 대한 실험적 연구를 수행하였다. 날개를 따라 배열된 광 브레그 격자 (Fiber Bragg Grating) 센서를 이용하여 날개 표면에서의 변형률(strain)을 측정하였다. 충격 햄머 실험 (Impact Hammer Test)을 통하여, 1차 및 고차 모드의 공진주파수를 측정하였다. 광섬유 센서를 이용한 실험결과를 스트레인 게이지를 이용한 실험 결과와 비교한 결과 모드 주파수는 매우 유사하였다. 하지만, 광섬유 센서의 경우 스트레인 게이지에서 감지하지 못하는 모드를 감지할 수 있었다. 또한, 실험으로부터 얻은 변형률 모드를 이용하여 근사적으로 날개의 변위 모드를 추정하였다.

Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: design and deployment

  • Liu, Hong-biao;Zhang, Qiang;Zhang, Bao-hua
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.163-173
    • /
    • 2017
  • Structural health monitoring (SHM) of civil infrastructure using fiber Bragg grating sensor networks (FBGSNs) has received significant public attention in recent years. However, there is currently little research on the health-monitoring technology of high-piled wharfs in coastal ports using the fiber Bragg grating (FBG) sensor technique. The benefits of FBG sensors are their small size, light weight, lack of conductivity, resistance corrosion, multiplexing ability and immunity to electromagnetic interference. Based on the properties of high-piled wharfs in coastal ports and servicing seawater environment and the benefits of FBG sensors, the SHM system for a high-piled wharf in the Tianjin Port of China is devised and deployed partly using the FBG sensor technique. In addition, the health-monitoring parameters are proposed. The system can monitor the structural mechanical properties and durability, which provides a state-of-the-art mean to monitor the health conditions of the wharf and display the monitored data with the BIM technique. In total, 289 FBG stain sensors, 87 FBG temperature sensors, 20 FBG obliquity sensors, 16 FBG pressure sensors, 8 FBG acceleration sensors and 4 anode ladders are installed in the components of the back platform and front platform. After the installation of some components in the wharf construction site, the good signal that each sensor measures demonstrates the suitability of the sensor setup methods, and it is proper for the full-scale, continuous, autonomous SHM deployment for the high-piled wharf in the costal port. The South 27# Wharf SHM system constitutes the largest deployment of FBG sensors for wharf structures in costal ports to date. This deployment demonstrates the strong potential of FBGSNs to monitor the health of large-scale coastal wharf structures. This study can provide a reference to the long-term health-monitoring system deployment for high-piled wharf structures in coastal ports.

Structural Performance Tests of Down Scaled Composite Wind Turbine Blade using Embedded Fiber Bragg Grating Sensors

  • Kim, Sang-Woo;Kim, Eun-Ho;Rim, Mi-Sun;Shrestha, Pratik;Lee, In;Kwon, Il-Bum
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.346-353
    • /
    • 2011
  • In this study, the structural performance tests, i.e., static tests and dynamic tests of the composite wind turbine blade, were carried out by using the embedded fiber Bragg grating (FBG) sensors. The composite wind turbine blade used in the test is the 1/23 scale of the 750 kW composite blade. In static tests, the deflections along the blade were evaluated. Evaluations were carried out with simple beam theory and quadratic fitting method by using the embedded FBG sensors to predict the structural behavior with respect to the load. The deflections were compared to those obtained from the laser displacement sensor and electric strain gauges. They showed good agreement. Modal tests were performed to investigate the dynamic characteristics using the embedded FBG sensors. The natural frequencies obtained from the FBG sensors corresponding to the nine mode shapes of the blade were compared to those from the laser Doppler vibrometer. They were found to be consistent with each other. Therefore, it is concluded that the embedded FBG sensors have a great capability for measuring the structural performances of the composite wind turbine blade when structural performance tests are carried out.

광반응 재료가 코팅된 단주기 광섬유격자 기반 자외선센서의 광민감도 향상 연구 (Improving the Sensitivity of an Ultraviolet Optical Sensor Based on a Fiber Bragg Grating by Coating With a Photoresponsive Material)

  • 김우영;김찬영;김현경;안태정
    • 한국광학회지
    • /
    • 제26권2호
    • /
    • pp.83-87
    • /
    • 2015
  • 본 논문은 자외선 광학센서 개발에 관한 것이다. 기존에 반도체 기반 자외선 센서를 대체하기 위해 개발된 단주기 광섬유격자기반 자외선 센서에 대한 측정 민감도를 향상시키기 위한 다양한 장치들을 설계하고 실험을 통해 성능을 확인하였다. 최근 연구를 통해 자외선 흡수에 따라 인장력이 유도되는 아조벤젠 폴리머 재료와 장력에 따른 광섬유격자 특성 변화를 조합하여 새로운 자외선 센서의 개념이 제시되었다. 본 연구에서는 광섬유격자 기반 자외선 센서에서 흡수하지 못하고 통과되는 자외선 잔광을 반사판을 이용해서 다시 반사시켜 센서에서 재흡수되는 원리로 센서의 민감도를 향상시켰다. 본 논문에서는 반사판의 종류를 선정하고 반사판의 곡률반경을 최적화하였다. 또한 기존의 원통형 집광렌즈를 이용한 민감도 향상 기술을 접목 시켜 아무런 장치가 없을 때와 비교해서 약 15배의 성능을 향상시키는 결과를 얻었다. 또한 외부 환경 효과를 줄이기 위한 패키지 모듈을 제작하여 적용하고 그 특성을 분석하였다.

Research on Temperature Sensing Characteristics of Fiber Bragg Grating in Wide Temperature Range

  • Naikui Ren;Hongyang Li;Nan Huo;Shanlong Guo;Jinhong Li
    • Current Optics and Photonics
    • /
    • 제8권2호
    • /
    • pp.162-169
    • /
    • 2024
  • This study investigates the temperature sensitivities of fiber Bragg grating (FBG) across a broad temperature spectrum ranging from -196 ℃ to 900 ℃. We developed the FBG temperature measurement system using a high-temperature tubular furnace and liquid nitrogen to supply consistent high and low temperatures, respectively. Our research showed that the FBG temperature sensitivity changed from 1.55 to 10.61 pm/℃ in the range from -196 ℃ to 25 ℃ when the FBG was packaged with a quartz capillary. In the 25-900 ℃ range, the sensitivity varied from 11.26 to 16.62 pm/℃. Contrary to traditional knowledge, the FBG temperature sensitivity was not constant. This inconsistency primarily stems from the nonlinear shifts in the thermo-optic coefficient and thermal expansion coefficient across this temperature spectrum. The theoretically predicted and experimentally determined temperature sensitivities of FBGs encased in quartz capillary were remarkably consistent. The greatest discrepancy, observed at 25 ℃, was approximately 1.3 pm/℃. Furthermore, it was observed that at 900 ℃, the FBG was rapidly thermally erased, exhibiting variable reflected intensity over time. This study focuses on the advancement of precise temperature measurement techniques in environments that experience wide temperature fluctuations, and has considerable potential application value.

열처리 공정을 이용한 regenerated FBG의 제작 (Fabrication of Regenerated Fiber Bragg Grating Using Thermal Annealing)

  • 서지희;이남권;이승환;김유미;유윤식
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.124-129
    • /
    • 2013
  • In this paper, we manufactured the regenerated FBG by the thermal annealing of seed FBG based on UV irradiation. The writing conditions of regenerated FBGs were investigated in four types of optical fiber. FBGs written in $H_2$-free fiber were erased and not regenerated during the thermal annealing. FBG written in $H_2$ loaded Boron co-doped fiber was erased at the temperature of about $580^{\circ}C$ and regenerated about $590^{\circ}C$. However, the extinction of regenerated FBG started at the temperature over $900^{\circ}C$ and then FBG disappeared out. FBG written in $H_2$ loaded Ge high doped fiber was erased and regenerated around the temperature of $800^{\circ}C$ and maintained until the end of the thermal annealing. The reflection of the regenerated FBG was decreased about 12 dB and the center wavelength of the regenerated FBG was shifted about 0.7 nm compared with that of the seed FBG. The thermal characteristics of the regenerated FBG were analyzed by reheating from room temperature to $980^{\circ}C$. As results, the regenerated FBG had survived without a decrease of reflection and the thermal sensitivity was $15pm^{\circ}C$.

새로운 스트레인 인가장치를 이용한 광섬유 링 레이저의 파장가변 특성 (Wavelength tunability of a fiber ring laser using a novel strain device)

  • 김성춘;장현수;이경식
    • 한국광학회지
    • /
    • 제16권1호
    • /
    • pp.99-102
    • /
    • 2005
  • 광섬유 링 레이저의 출력파장 가변을 위해서 신뢰성있는 새로운 스트레인 인가장치를 제작하고 이 장치를 이용하여 파장가변 광섬유 링 레이저를 구현하였다. 제작된 광섬유 링 레이저의 출력파워는 -12 dBm이었으며, 선폭은 0.05 nm이었다. 새로운 스트레인 인가장치를 이용하여 광섬유에 8000 $\mu$ strain을 인가하였을 때 광섬유 링 레이저의 출력파장은 약 10 nm 가변되는 것을 확인 할 수 있었다.

Composite Fracture Detection Capabilities of FBG Sensor and AE Sensor

  • Kim, Cheol-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • 제27권4호
    • /
    • pp.152-157
    • /
    • 2014
  • Non-destructive testing methods of composite materials are very important for improving material reliability and safety. AE measurement is based on the detection of microscopic surface movements from stress waves in a material during the fracture process. The examination of AE is a useful tool for the sensitive detection and location of active damage in polymer and composite materials. FBG (Fiber Bragg Grating) sensors have attracted much interest owing to the important advantages of optical fiber sensing. Compared to conventional electronic sensors, fiber-optical sensors are known for their high resolution and high accuracy. Furthermore, they offer important advantages such as immunity to electromagnetic interference, and electrically passive operation. In this paper, the crack detection capability of AE (Acoustic Emission) measurement was compared with that of an FBG sensor under tensile testing and buckling test of composite materials. The AE signals of the PVDF sensor were measured and an AE signal analyzer, which had a low pass filter and a resonance filter, was designed and fabricated. Also, the wavelength variation of the FBG sensor was measured and its strain was calculated. Calculated strains were compared with those determined by finite element analysis.

광섬유 변형률 센서를 이용한 구조물의 동적 변형 추정 (Dynamic Deformation Estimation of Structures Using Fiber Optic Strain Sensors)

  • 강래형;김대관;;;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1279-1285
    • /
    • 2006
  • In this study, structural deformation estimation using displacement-strain relationship is investigated. When displacements of a structure cannot be measured directly, estimation of displacements using strain data can be an alternative solution. Additionally, the deformation of the whole structure as well as the displacement at the point of interest can be estimated. Strain signals are obtained front Fiber Bragg Grating(FBG) sensors that have an excellent multiplexing ability. Some experiments were performed on two beams and a plate to which FBG sensors were attached in the laboratory. Strain signals from FBG sensors along a single strand of optical fiber were obtained through wavelength division multiplexing(WDM) method. The beams and the plate structures were subjected to various loading conditions, and deformed shapes were reconstructed from the displacement-strain transformation relationship. The results show good agreements with those measured directly from laser sensors. Moreover, the whole structural shapes of the beams and the plate were estimated using only some strain sensors.

색분산 보상을 위한 선형 첩 광섬유 격자의 Apodization (Apodization of Linearly Chirped Fiber Gratings for Dispersion Compensation)

  • 박제형;최선민;한영근;김상혁;이상배
    • 한국광학회지
    • /
    • 제15권3호
    • /
    • pp.214-221
    • /
    • 2004
  • 색분산 보상에 사용되는 선형 첩 광섬유 격자의 제작에 있어서 Group Delay Ripple(GDR)을 줄이기 위한 apodization 기술에 대해 이론적으로 분석하고 실험적으로 규명하고자 한다. 첩격자의 제작에는 위상 마스크를 이용한 UV 빔 스캐닝 기법을 적용하였고, PZT(Piezoelectric transducer)를 이용하여 위상 마스크를 빔 스캐닝 중에 적절하게 흔들어줌으로써 apodization이 일어나도록 하였다. 이러한 모든 과정이 컴퓨터 제어로 이루어지기 때문에 다양한 apodization 프로파일을 적용할 수 있었다. Gaussian, Raised-cosine, Blackman, 그리고 Hyperbolic tangent 등의 프로파일을 적용하여 첩격자를 제작하였으며 실험 결과 0.05 nm 구간평균 peak-to-peak GDR이 20ps 이하로 감소하였다.