• Title/Summary/Keyword: fiber bragg grating

Search Result 418, Processing Time 0.026 seconds

Integrity of Optical Fiber Sensor for Measurement of Ground Thermal Conductivity (지중 열전도도 측정을 위한 광섬유 센서의 건전성)

  • Yoon, Seok;Choi, Jung-Chan;Lee, Seung-Rae;Lee, Michael-MyungSub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.157-160
    • /
    • 2011
  • 본 연구에서는 광섬유 센서 기반 스마트 모니터링 시스템이 지중 열전도도 측정에도 효율적으로 적용될 수 있는지를 분석하였다. 이를 위해 광섬유 온도센서를 이용하여 지반의 열전도도를 측정할 수 있는 열응답 시험기가 개발되었다. 개발된 열응답 시험기는 기존의 RTD(Resistance Temperature Detector) 온도 센서 외에 광섬유 센서의 한 종류인 FBG(Fiber Bragg Grating) 센서도 실시간적으로 측정할 수 있는 시스템으로 구성되어 있다. 개발된 장비의 적용성 검증을 위하여 주문진 표준사를 이용하여 모형토조 내에 일정한 간극비에 맞추어 시료가 조성되었으며 지중열교환기는 U자형 파이프가 사용되었다. 20시간동안 열응답 시험을 통하여 광섬유 센서와 RTD 센서를 동시에 이용하여 온도값을 측정하여 표준사의 열전도도 값을 산출하였다. 그 결과 모형실험을 통한 열전도도 값은 탐침법을 통해 얻어진 열전도도 값과 선형 열원 모델(line source model) 해석해와 거의 유사하게 나타났으며 광섬유 센서와 RTD 센서와의 온도차는 0.1~0.3$^{\circ}$로써 유사한 값을 나타내었다. 따라서 본 연구에서 개발된 광섬유 기반 열응답 시험기는 지반의 열전도도를 측정하는데 효과적으로 사용될 수 있음을 알 수 있었으며 향후 지열시스템 가동에 따른 지중열 교환기의 손상도 평가 및 경보시스템 개발을 위해 지중열교환기의 거동을 실시간으로 모니터링 하는데 있어서도 효과적으로 사용될 수 있을 것으로 생각된다.

  • PDF

Fiber Sensor Network for Vessel Monitoring based on Code Division Multiple Access (코드분할 다중방식을 기반으로 하는 선박 상태 모니터링 광섬유 센서 네트워크)

  • Kim, Young-Bok;Lee, Seong-Ro;Jeon, Sie-Wook;Park, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1216-1221
    • /
    • 2011
  • We propose a multiplexed fiber Bragg grating (FBG) sensor network for vessel monitoring to measure the variation of strain and temperature by environmental perturbation based on code division multiple access (CDMA). The center wavelength of FBG was linearly changed by environmental perturbation such as strain and temperature variation so that we could be monitoring the state of sensors. A RSOA was used as optical broadband source and which was modulated by using pseudo random binary sequence (PRBS) signal. The correlation peak of reflected signal from sensor networks was measured. In this paper, we used the sliding correlation techniques for high speed response and dynamic rage of sensors.

FBG Sensor Demodulation Using a Double-Pass Mach-Zhender Interferometer (더블패스 마하젠더 간섭계를 이용한 광섬유 격자 센서의 파장복조)

  • Park, Hyoung-Jun;Song, Min-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • A wavelength-demodulation algorithm for FBG sensor is proposed by using a double-pass Mach-Zehnder interferometer. Zero-crossing points of double-passed interference signal are used to trigger the accurate $90^{\circ}C$ phase difference positions in the sensor signal, which is an essential condition in the subsequent arctangent and phase unwrapping signal processing. With the proposed method, we could efficiently measure various measurands, such as dynamic-, static-strain, and temperature, and ${\sim}8pm$ of wavelength resolution was obtained.

Implemeention and performance measurement of a novel in-service supervisory system for WDM transmission link (파장분할다중화방식 전송로의 In-service 감시를 위한 새로운 감시시스템의 구현 및 성능평가)

  • 김필한;윤호성;박남규;서재은;정기태;유기원;이규행
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.129-134
    • /
    • 2001
  • Novel supervisory system for WDM transmission link using conventional optical time domain reflectometry was presented. By modifying the structure of erbuim doped fiber amplifier to support bi-directional transmission at arDR pulse wavelength and launching the optical pulse into transmission link in the opposite direction of data signal propagation to avoid the distortion by cross-gain modulation, it is possible to monitor the WDM link in service. To prove the validity of proposed scheme, the supervision result of 2.5 Gbps $\times$ 8 channel WDM 320 km transmission system in service by arDR was presented. And power penalty due to monitoring was measured as smaller than 0.3 dB. .3 dB.

  • PDF

A Study on the Development of FBG-Based Load Measurement System for Structural Health Monitoring of Highway Bridge (도로교 안전관리 모니터링 시스템의 입력하중 측정을 위한 FBG 기반 하중 측정시스템 개발에 관한 연구)

  • Lee, Kyu Wan;Han, Jong Wook;Kim, Chul-Young;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.469-475
    • /
    • 2019
  • A long-term bridge monitoring system has been introduced and is under operation for long-term safety management of the structure. However, it is difficult to assess the condition of the quantitative structural system as it only measures responses and does not measure input loads. To overcome these shortcomings, FBG (Fiber Bragg Grating)-based input load measurement sensors were developed in this paper for measuring highway bridge input loads and their validity was verified through laboratory tests.

Concrete pavement monitoring with PPP-BOTDA distributed strain and crack sensors

  • Bao, Yi;Tang, Fujian;Chen, Yizheng;Meng, Weina;Huang, Ying;Chen, Genda
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.405-423
    • /
    • 2016
  • In this study, the feasibility of using telecommunication single-mode optical fiber (SMF) as a distributed fiber optic strain and crack sensor was evaluated in concrete pavement monitoring. Tensile tests on various sensors indicated that the $SMF-28e^+$ fiber revealed linear elastic behavior to rupture at approximately 26 N load and 2.6% strain. Six full-scale concrete panels were prepared and tested under truck and three-point loads to quantify the performance of sensors with pulse pre-pump Brillouin optical time domain analysis (PPP-BOTDA). The sensors were protected by precast mortar from brutal action during concrete casting. Once air-cured for 2 hours after initial setting, half a mortar cylinder of 12 mm in diameter ensured that the protected sensors remained functional during and after concrete casting. The strains measured from PPP-BOTDA with a sensitivity coefficient of $5.43{\times}10^{-5}GHz/{\mu}{\varepsilon}$ were validated locally by commercial fiber Bragg grating (FBG) sensors. Unlike the point FBG sensors, the distributed PPP-BOTDA sensors can be utilized to effectively locate multiple cracks. Depending on their layout, the distributed sensors can provide one- or two-dimensional strain fields in pavement panels. The width of both micro and major cracks can be linearly related to the peak strain directly measured with the distributed fiber optic sensor.

Feasibility Study on Packaged FBG Sensors for Debonding Monitoring of Composite Wind Turbine Blade (풍력발전기 복합재 블레이드의 접착 분리 모니터링을 위한 패키징 광섬유 브래그 격자 센서 탐촉자의 사용성 검토)

  • Kwon, Il-Bum;Choi, Ki-Sun;Kim, Geun-Jin;Kim, Dong-Jin;Huh, Yong-Hak;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.382-390
    • /
    • 2011
  • Smart sensors embedable in composite wind turbine blades have been required to be researched for monitoring the health status of large wind turbine blades during real-time operation. In this research, the feasibility of packaged FBG sensor probes was studied through the experiments of composite blade trailing edge specimens in order to detect cracking and debonding damages. The instants of cracking and debonding generated in the shear web were confirmed by rapid changes of the wavelength shifts from the bare FBG sensor probes. Packaged FBG sensor probes were proposed to remove the fragile property of bare FBG sensor probes attached on composite wind blade specimens. Strain and temperature sensitivity of fabricated probes installed on the skin of blade specimen were almost equal to those of a bare FBG sensor. Strain sensitivity was measured to be ${\mu}{\varepsilon}$/pm in a strain range from to 0 to 600 ${\mu}{\varepsilon}$, and the calculated temperature sensitivity was to be 48 pm/$^{\circ}C$ in the heating test up to 80 degree.

Impact Monitoring of Composite Structures using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 충격 모니터링 기법 연구)

  • Jang, Byeong-Wook;Park, Sang-Oh;Lee, Yeon-Gwan;Kim, Chun-Gon;Park, Chan-Yik;Lee, Bong-Wan
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • Low-velocity impact can cause various damages which are mostly hidden inside the laminates or occur in the opposite side. Thus, these damages cannot be easily detected by visual inspection or conventional NDT systems. And if they occurred between the scheduled NDT periods, the possibilities of extensive damages or structural failure can be higher. Due to these reasons, the built-in NDT systems such as real-time impact monitoring system are required in the near future. In this paper, we studied the impact monitoring system consist of impact location detection and damage assessment techniques for composite flat and stiffened panel. In order to acquire the impact-induced acoustic signals, four multiplexed FBG sensors and high-speed FBG interrogator were used. And for development of the impact and damage occurrence detections, the neural networks and wavelet transforms were adopted. Finally, these algorithms were embodied using MATLAB and LabVIEW software for the user-friendly interface.

Machine Learning Based Structural Health Monitoring System using Classification and NCA (분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템)

  • Shin, Changkyo;Kwon, Hyunseok;Park, Yurim;Kim, Chun-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • This is a pilot study of machine learning based structural health monitoring system using flight data of composite aircraft. In this study, the most suitable machine learning algorithm for structural health monitoring was selected and dimensionality reduction method for application on the actual flight data was conducted. For these tasks, impact test on the cantilever beam with added mass, which is the simulation of damage in the aircraft wing structure was conducted and classification model for damage states (damage location and level) was trained. Through vibration test of cantilever beam with fiber bragg grating (FBG) sensor, data of normal and 12 damaged states were acquired, and the most suitable algorithm was selected through comparison between algorithms like tree, discriminant, support vector machine (SVM), kNN, ensemble. Besides, through neighborhood component analysis (NCA) feature selection, dimensionality reduction which is necessary to deal with high dimensional flight data was conducted. As a result, quadratic SVMs performed best with 98.7% for without NCA and 95.9% for with NCA. It is also shown that the application of NCA improved prediction speed, training time, and model memory.

Optical True Time-Delay for Planar Phased Array Antennas Composed of a FBG Prism and a Fiber Delay Lines Matrix (FBG 프리즘과 광섬유 지연선로 행렬을 이용한 평면 위상 배열 안테나용 광 실시간 지연선로)

  • Jung, Byung-Min;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.7-17
    • /
    • 2006
  • In this paper, we proposed an optical true time-delay (TTD) for planar phased array antennas (PAAs), which is composed of a wavelength-dependent optical true time delay (WDOTTD) followed by a wavelength-independent optical true time delay (WIOTTD). The WDOTTD is a fiber Bragg gratings (FBGs) Prism and the WDOTTD is a fiber delay-lines matrix of which each component consists of a certain length of fiber connected to cross-ports of a 2${\times}$2 MEMS switch. A 10-GHz 2-bit${\times}$4-bit two-dimensional optical TTD has been fabricated by cascading a WDOTTD with a maximum time delay of 810 ps to a WIOTTD of $\pm$50 ps. Time delay and insertion loss for each radiation angle have been measured. Time delay error for the WIOTTD has been measured to be less than $\pm$1 ps. We have also designed a two-dimensional 10-GHz PAA composed of 8${\times}$8 microstrip patch antenna elements driven by the proposed TTD. The radiation patterns of this PAA have been obtained by simulation and analyzed.