• Title/Summary/Keyword: fiber aspect ratio

Search Result 240, Processing Time 0.029 seconds

Evaluation of Delamination Behavior in Hybrid Composite Using the Crack Length and the Delamination Width (균열길이와 층간분리 폭의 관계를 이용한 하이브리드 복합재의 층간분리 거동 평가)

  • 송삼홍;김철웅
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • Although the previous researches evaluated the fatigue behavior of glass fiber/epoxy laminates using the traditional fracture mechanism, their researches were not sufficient to do it: the damage zone of glass fiber/epoxy laminates was occurred at the delamination zone instead of the crack-metallic damages. Thus, previous researches were not applicable to the fatigue behavior of glass fiber/epoxy laminates. The major purpose of this study was to evaluate delamination behavior using the relationship between crack length and delamination width in hybrid composite material such as Al/GFRP laminate. The details of investigation were as follows : 1) Relationship between crack length and delamination width, 2) Relationship between delamination aspect ratio and delamination area rate, 3) Variation of delamination growth rate is attendant on delamination shape factors. The test results indicated that the delamination growth rate depends on delamination width delamination aspect ratio and delamination shape factors.

Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked Steel Fibers (갈고리형 강섬유를 혼입한 보통 및 고강도 콘크리트의 휨강도 평가)

  • Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.531-539
    • /
    • 2008
  • The purpose of this study is to investigate the mechanical properties of high strength concretes reinforced with hooked steel fiber. For this purpose, total 36 specimens whose variables are concrete compressive strength, steel fiber aspect ratio, and steel fiber volume contents, are made and tested. From the test results including previous research work, flexural performance of steel fiber reinforced high strength concrete is evaluated in terms of flexural strength and toughness index. Flexural behavior of steel fiber reinforced high strength concrete is enhanced with respect to the fiber volume content, the aspect ratio, and concrete compressive strength. More efforts are devoted to evaluate quantitatively between the flexural strength and the structural parameters such as the fiber volume content, the aspect ratio, and concrete compressive strength.

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

Assessment of flexural and splitting strength of steel fiber reinforced concrete using automated neural network search

  • Zhang, Zhenhao;Paul, Suvash C.;Panda, Biranchi;Huang, Yuhao;Garg, Ankit;Zhang, Yi;Garg, Akhil;Zhang, Wengang
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.81-92
    • /
    • 2020
  • Flexural and splitting strength behavior of conventional concrete can significantly be improved by incorporating the fibers in it. A significant number of research studies have been conducted on various types of fibers and their influence on the tensile capacity of concrete. However, as an important property, tensile capacity of fiber reinforced concrete (FRC) is not modelled properly. Therefore, this paper intends to formulate a model based on experiments that show the relationship between the fiber properties such as the aspect ratio (length/diameter), fiber content, compressive strength, flexural strength and splitting strength of FRC. For the purpose of modeling, various FRC mixes only with steel fiber are adopted from the existing research papers. Automated neural network search (ANS) is then developed and used to investigate the effect of input parameters such as fiber content, aspect ratio and compressive strength to the output parameters of flexural and splitting strength of FRC. It is found that the ANS model can be used to predict the flexural and splitting strength of FRC in a sensible precision.

INVESTIGATION OF A STRESS FIELD EVALUATED BY ELASTIC-PLASTIC ANALYSIS IN DISCONTINUOUS COMPOSITES

  • Kim, H.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.483-491
    • /
    • 2007
  • A closed form solution of a composite mechanics system is performed for the investigation of elastic-plastic behavior in order to predict fiber stresses, fiber/matrix interfacial shear stresses, and matrix yielding behavior in short fiber reinforced metal matrix composites. The model is based on a theoretical development that considers the stress concentration between fiber ends and the propagation of matrix plasticity and is compared with the results of a conventional shear lag model as well as a modified shear lag model. For the region of matrix plasticity, slip mechanisms between the fiber and matrix which normally occur at the interface are taken into account for the derivation. Results of predicted stresses for the small-scale yielding as well as the large-scale yielding in the matrix are compared with other theories. The effects of fiber aspect ratio are also evaluated for the internal elastic-plastic stress field. It is found that the incorporation of strong fibers results in substantial improvements in composite strength relative to the fiber/matrix interfacial shear stresses, but can produce earlier matrix yielding because of intensified stress concentration effects. It is also found that the present model can be applied to investigate the stress transfer mechanism between the elastic fiber and the elastic-plastic matrix, such as in short fiber reinforced metal matrix composites.

A Study on the Stress Analysis of Discontinuous Fiber Reinforced Polymer Matrix Composites (불연속 섬유강화 고분자 복합재료의 응력해석에 관한 연구)

  • Kim, H.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.101-107
    • /
    • 2008
  • A composite mechanics for discontinuous fiber reinforced polymer matrix composites(PMC) is analysed in order to predict fiber axial stresses. In continuum approach. frictional slip which usually takes place between fibers and polymers is accounted to derive PMC equations. The interfacial friction stress is treated by the product of the coefficient of friction and the compressive stress norma1 to the fiber/matrix interface. The residual stress and the Poisson's contraction implemented by the rule of mixture(ROM) are considered for the compressive stress normal to the fiber/matrix interface. In addition. the effects of fiber aspect ratio and fiber volume fraction on fiber axial stresses are evaluated using the derived equations. Results are illustrated numerically using the present equations with reasonable materials data. It is found that the fiber axial stress in the center region shows no great discrepancy for different fiber aspect ratios and fiber volume fractions while some discrepancies are shown in the fiber end region.

Effects of Short-fiber Aspect Ratio and Diameter Ratio on Tensile Properties of Reinforced Rubber (단섬유 종횡비 및 직경비가 강화고무의 인장특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.18-25
    • /
    • 2003
  • The tensile properties of short nylon6 fiber reinforced NR and SBR have been investigated as functions of fiber aspect ratio(AR), diameter ratio(DR), interphase condition, and fiber content. The tensile strength increased with increasing fiber AR(20 min.) and good interphase conditions. The short-fiber(DR=3 and AR=20 min.) reinforced SBR did not show the dilution effect for all interrhase conditions. And the short-fiber(DR=3 and AR=20min.) reinforced NR did not show the dilution effect except for the no-coating. The tensile moduli were significantly improved due to fiber AR. fiber content, and good interphase at same DR. The better interphase condition showed the higher pull-out force at same DR. Also, the stress analysis near the fiber end carried out using axisymmetric FEA to be convinced of the reinforcing mechanism. It is found that the fiber AR, interphase and DR have an important effect on tensile properties.

Mechanical Properties of Concrete Pavement by Low Fraction of Macro Fiber (매크로 섬유의 저혼입에 따른 콘크리트 포장의 역학적 특성)

  • Choi, Sung-Yong;Park, Young-Hwan;Jung, Woo-Tai;Park, Jong-Sup
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.1-11
    • /
    • 2012
  • PURPOSES : The purpose of the study was to examine dynamic features of concrete after mixing a little macro fiber with small aspect ratio and long length utilized for bridge, tunnel and shotcrete for tensile performance and crack control in domestic/overseas countries with cement concrete pavement mix. METHODS : Coarse aggregates with small aspect ratio and macro fibers with maximum length of approximately 32 mm are introduced in small quantities in the mix proportions of concrete pavement so as to prevent loss of the workability. Then, this study intends to evaluate the applicability of macro fibers in the mix proportions of concrete pavement by examining the basic construction performance, as well as the change of toughness, the equivalent bending strength and the flexural toughness index caused by compression, bending, tension and the flexural stress-displacement curve. RESULTS : As the results, in each kind of macro fiber, polyvinyl alcohol fiber and steel fiber displayed a good performance. CONCLUSIONS : In 0.2 and 0.3% of fiber contents, it is appeared that polyvinyl alcohol fiber has a large effect on improvement of tensile performance and steel fiber on improvement of deforming performance of bending stress.

Flexural Toughness and Fatigue Behavior of Steel Fiber Reinforced Rapid-set Cement Concrete (강섬유보강 초속경시멘트 콘크리트의 휨인성 및 피로거동)

  • Lee, Bong-Hak;Hong, Chang-Woo;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.163-172
    • /
    • 1999
  • This study is conducted on the flexural toughness and flexural fatigue test to fine the mechanical properties of steel fiber reinforced rapid-set cement concrete. Experimental investigation is examined according to fiber contents(0, 0.4, 0.7, 1.0, 1.5%), fiber aspect ratio(58, 60, 83), fiber type (hooked, crimped fiber), and cement type (normal portland & rapid-set cement). The principal results obtained through this study are as follows; toughness and fatigue resistance tend to considerably increase with fiber contents, fiber aspect ration. And hooked fiber is improved better than crimped fiber. Concrete using rapid set cement is increased strength properties compared with concrete using normal portland cement, but relative strength properties behavior and fatigue resistance show a tendency to decrease a little.

  • PDF

Flexural-Shear Behavior of Steel Fiber Reinforced High Strength Concrete Beams (훅트강섬유보강 고강 콘크리트 보의 휨전단 거동)

  • 한형섭;박인철;김명성;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.567-572
    • /
    • 1999
  • Experimental study was conducted to investigate the flexural-shear behavior of hooked steel fiber reinforced high strength concrete (SFRHC) beams. Twenty beams with shear span-depth ratio of 1.45 were tested, of which variables were the contents of steel fiber with aspect ratio of 60, tension reinforcement ratio and concrete compressive of 60MPa and 80MPa. Test results has shown that shear failure of the beams were changed into flexural-shear failure or flexural failure according to increasing steel fiber content, that SFRHC with slump of 15cm over and fiber volume ratio of 1.5% was possible in practice, and that proper volume ratio of steel fiber was 1.5%.

  • PDF