• Title/Summary/Keyword: fiber aspect ratio

Search Result 240, Processing Time 0.026 seconds

Formula to identify the Influence of steel fibres on the mechanical properties of HPC

  • Philip, Nivin;Anil, Sarah
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.479-484
    • /
    • 2020
  • This work performed to analyses the impact of hooked end steel fibres on the mechanical properties of high performance concrete. The mechanical properties considered incorporate compressive strength, split tensile strength and flexural strength. Taking in to thought parameters, such as, volume fraction of fibres, fibre aspect ratio and grade of concrete, a logical strategy called Taguchi technique was utilized to discover the ideal blend of factors. L9 Orthogonal Array (OA) of Taguchi network comprising of three variables and three dimensions is utilized in this work. The evaluations of concrete considered were M60, M80 and M100. M60 contained 15% of metakaolin as bond swap though for M80 it was 5% of metakaolin and for M100 it was 10% metakaolin and 10% of silica smolder. The volume portion of fiber was fluctuated by 0.5%; 1% and 1.5% and the viewpoints proportions considered were 50, 60 and 80. The test outcomes demonstrate that incorporation of steel fibres enhance significantly the the strength characteristics of concrete, predominantly the splitting tensile strength and flexural strength. In light of relapse investigation of the test information scientific models were produced for compressive strength, split tensile strength and flexural strength of the steel fibre-reinforced high performance concrete.

The Effect of pH and temperature on the Morphology of Aluminum Hydroxides formed by Hydrolysis Reaction (알루미늄의 수화 반응시 pH와 온도에 따른 형상 변화)

  • 오영화;이근회;박중학;이창규;김흥회;김도향
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2004
  • A formation of aluminum hydroxide by hydrolysis reaction in the water has been studied by using nano aluminum powder fabricated by pulsed wire evaporation(PWE) method. The hydroxide type and morphology depending on temperature and pH were examined by structural analysis. The Boehmite($Al_2O_3$.$H_2O$ or AIO(OH)) was predominantly formed in high temperature region over 4$0^{\circ}C$, while the Bayerite($Al_2O_3$.$H_2O$ or $Al(OH)_3$) below $30^{\circ}C$ of hydrolysis temperature. The Boehmite formation was preferred to the Bayerite in acidic solution in the same hydrolysis temperature. The slowly formed Bayerite phase showed facet crystalline structure, while the fast formed Boehmite was fine fiber with a large aspect ratio of several nm in diameter and several hundred nm in length, and with much larger specific surface area(SSA) than that of Bayerite. The highest SSA was about $420m^2$/g.

Microstructure Control of Porous In-situ Synthesized $Si_2N_2O-Si_3N_4$ Ceramics

  • Paul, Rajat Kanti;Lee, Chi-Woo;Kim, Hai-Doo;Lee, Byong-Taek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.325-326
    • /
    • 2006
  • Using $6wt%Y_2O_3-2wt%Al_2O_3$ as sintering additives and Si as a raw powder, the continuously porous in-situ $Si_2N_2O-Si_3N_4$ bodies were fabricated by multi-pass extrusion process and their microstructures were investigated depending on the addition of carbon (0-9wt%) in the mixture powder. The introduction of $Si_2N_2O$ fibers observed in the unidirectional continuous pores as well as in the pore-frame regions of the nitrided bodies can be an effective method in increasing the filtration efficiency. In the case of no carbon addition, the network type $Si_2N_2O$ fibers with high aspect ratio appeared in the continuous pores with diameters of 150-200 nm. However, in the case of 9wt% C addition, the fibers were found without any network type and had diameters of 200-250 nm.

  • PDF

Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate

  • Meran, Ahmad P.;Samanci, Ahmet
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.685-692
    • /
    • 2017
  • In this study, the effect of various adhesively bonded composite patches on mechanical properties of notched Al-Mg alloy plates was analyzed. For this purpose firstly, the un-notched and notched specimens were fabricated from 5086 Al-Mg alloys which have been used in armor-plated military vehicles. The surface notches as a flaw were machined with circular cutting tool to form notch aspect ratio a/c=0.15 and notch-to-thickness ratios a/t=0.5 in the radial direction on the test specimens. Then, various composite patches which reinforced by glass, carbon and Kevlar fibers were bonded adhesively at elliptically surface notches. Finally, experimental measurements conducted by applying tensile static loading. The experimental results showed that repairing with composite patches with order of carbon, glass and Kevlar fibers have remarkable effect on tensile strength of the notched plate. Also the finite element models were developed using Abaqus/Explicit code to predict the tensile strength and elongation of unrepaired notched specimen and specimen repaired by carbon fiber composite patch. The comparison between numerical and experimental results showed good agreement between them and proved the accuracy of numerical modeling.

Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent

  • Park, Myung-Hyun;Ha, Ji-Hwan;Song, Hyeonjun;Bae, Joonwon;Park, Sung-Hoon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.387-392
    • /
    • 2018
  • Various technical approaches and concepts have been proposed to develop conductive super-hydrophobic (SH) surfaces. However, most of these approaches are not usable in practical applications because of insufficient adhesion and cost issues. Additionally, durability and uniformity issues are still in need of improvement. The goal of this research is to produce a large-area conductive SH surface with improved adhesion performance and uniformity. To this end, carbon nanotubes (CNT) with a high aspect ratio and elastomeric polymer were utilized as a conductive filler and matrix, respectively, to form a coating layer. Additionally, nanoscale silica particles were utilized for stable implementation of the conductive SH surface. To improve the adhesion properties between the SH coating layer and substrate, pretreatment of the substrate was conducted by utilizing both wet and dry etching processes to create specific organic functional groups on the substrate. Following pretreatment of the surface, a zirco-aluminate coupling agent was utilized to enhance adhesion properties between the substrate and the SH coating layer. Raman spectroscopy revealed that adhesion was greatly improved by the formation of a chemical bond between the substrate and the SH coating layer at an optimal coupling agent concentration. The developed conductive SH coating attained a high electromagnetic interference (EMI) shielding effectiveness, which is advantageous in self-cleaning EMI shielding applications.

Prediction of Bending Fatigue Life of Cracked Out-of-Plane Gusset Joint Repaired by CFRP Plates

  • Matsumoto, Risa;Komoto, Takafumi;Ishikawa, Toshiyuki;Hattori, Atsushi;Kawano, Hirotaka
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1284-1296
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP), plates bonding repair method is one of the simple repair methods for cracked steel structures. In this study, the influence of width of CFRP plates on bending fatigue life of out-of-plane gusset joint strengthened with CFRP plates was investigated from the experimental and numerical point of view. In the bending fatigue test of cracked out-of-plane gusset joint strengthened with CFRP plates, the effect of width of CFRP plates on crack growth life was clarified experimentally. Namely, it was revealed that the crack growth life becomes larger with increasing the width of CFRP plates. In the numerical approach, the stress intensity factor (SIF) at the surface point of a semi-elliptical surface crack was estimated based on the linear fracture mechanics. Furthermore, the extended fatigue life of cracked out-of-plane gusset joint strengthened with CFRP plates was evaluated by using the estimated SIF at the surface point and the empirical formula of the aspect ratio of semi-elliptical crack. As the results of numerical analysis, the estimated fatigue life of the specimen strengthened with CFRP plates showed the good agreement with the test results.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.

Three-Dimensional Vibration Analysis of Rectangular Laminated Composite Plates with Combination of Clamped and Free Boundary Conditions (고정과 자유경계조건의 조합을 고려한 직사각형 복합적층판의 3차원 진동해석)

  • Kim, Joo woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.161-171
    • /
    • 2006
  • paper presents the results of a three-dimensional study of the natural vibration of laminated composite rectangular plates with various combinations of clamped and free boundaries. The Ritz method was used to obtain the stationary values of the associated Lagrangian, with displacements approximated using mathematicaly complete, characteristic orthogonal polynomials. The correctness of the three-dimensional model was established through a convergence study of the non-dimensional frequencies, followed by a comparison of the analytical findings in the existing literature. The wide scope of additional three-dimensional frequency results explains the influence of a number of geometrical and material parameters for angle-ply and cross-ply laminated plates, namely aspect ratio (${\mathcal{a/b}}$), thickness ratio (${\mathcal{a/h}}$), orthotropy of material, number of plies (${\mathcal{N}}$), fiber orientation angle (${\theta}$), and stacking sequence.

Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites (PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구)

  • Kim, Sung-Ryong;Yim, Seung-Won;Kim, Dae-Hoon;Lee, Sang-Hyup;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The particulate type silicon carbide (SiC) and fiber type carbon fiber (CF) filler, of similar thermal conductivities, were mixed with polyetheretherketone (PEEK) to investigate the filler effects on the thermal diffusivity. The SiC and CF fillers had a good and uniform dispersion in PEEK matrix. Thermal diffusivities of PEEK composites were measured from ambient temperature up to $200^{\circ}C$ by laser flash method. The diffusivities were decreased as increasing temperature due to the phonon scattering between PEEK-filler and filler-filler interfaces. Thermal diffusivity of PEEK composites was increased with increasing filler content and the thermal conductivities of two-phase system were compared to the experimental results and it gave ideas on the filler dispersion, orientation, aspect ratio, and filler-filler interactions. Nielson equation gave a good prediction to the experimental results of PEEK/SiC. The easy network formation by CF was found to be substantially more effective than SiC and it gave a higher thermal diffusivities of PEEK/CF than PEEK/SiC.

  • PDF

Evaluation of Nutrient and Food Intake Status, and Dietary Quality - Focused on Comparison with Overweight and Normal Female University Students - (서울 지역 여대생의 식사 섭취 상태 및 식사의 질 평가 -과체중군과 정상군의 비교를 중심으로 -)

  • Yeon, Jee-Young;Bae, Yun-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.453-461
    • /
    • 2010
  • The purpose of this study was to evaluate nutrient and food intake status and dietary, quality according to obesity based on nutrient and food group intake, in female university students. Surveys were conducted using questionnaires and 3 days, dietary record in 360 female university students residing in Seoul. The subjects were divided into two groups by percent of body fat: an overweight group(percent of body fat more than 23%, n=249) and normal group(percent of body fat below 23%, n=111). The overweight group had a larger proportion of subjects who binged compared to the normal group. There was no significant difference in energy intake between the two groups. The densities of plant calcium and dietary fiber in the overweight group were significantly lower than those of the normal group. However, animal fat density was significantly higher in overweight subjects. The Korean's dietary diversity score(KDDS) of the overweight group was 4.65, and that of the normal group was 4.67, indicating no significant difference. There was no significant difference of DQI-I between the overweight group(50.8) and normal group(51.1). However, the macronutrient ratio score was significantly lower in the overweight group. These results indicate that overweight female college students may have improper dietary habits, and have lower overall balance aspect macronutrient ratios.