• 제목/요약/키워드: few-walled carbon nanotube

검색결과 8건 처리시간 0.03초

연소 기술을 이용한 반도체성 단일벽 탄소 나노튜브 장치 제작 (The Fabrication of A Semi-conducting Single-walled Carbon Nanotube Device Using A Burning Technique)

  • 이형우;한창수;김수현;곽윤근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.881-885
    • /
    • 2004
  • We report a method for making a device on which semi-conducting single-walled carbon nanotubes are attached selectively between two metal electrodes. This method is divided two processes. First we can connect a rope of single-walled carbon nanotubes(SWNTs) between two electrodes using the electric field. But a SWNTs' rope obtained by the first process was composed of a few of metallic and semi-conducting SWNTs together. The second process is to burn the metallic and semi-conducting nanotubes through applying a voltage. As a result, we can obtain a semi-conducting SWNT device. To make the patterned electrodes, we deposited $SiO_2$(150nm) on a wafer. After then, we made a patterned samples with Ti(200 $\AA$)/Au(300$\AA$). We empirically obtained a electric condition 0.66 $V_{pp}$ /${\mu}{\textrm}{m}$@5MHz. From this result, we verified that most of current go through the metallic nanotubes in this device. When we apply DC voltage between two electrodes, the metallic carbon nanotubes are burnt. Finally, we can obtain a semi-conducting nanotube device which we desire to make. We got the I-V characteristic graph which has shown the semi-conducting property. We hope to apply to the various applications using this selective semi-conducting carbon nanotube deposition method.ethod.

  • PDF

Influence of a silane coupling agent on the optoelectrical properties of carbon nanotube/binder hybrid thin films

  • Han, Joong-Tark;Woo, Jong-Seok;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Carbon letters
    • /
    • 제12권2호
    • /
    • pp.90-94
    • /
    • 2011
  • We present the effect of a coupling agent on the optoelectrical properties of few-walled carbon nanotube (FWCNT)/epoxy resin hybrid films fabricated on glass substrates. The FWCNT/epoxy resin mixture solution was successfully prepared by the direct mixing of a $HNO_3$-treated FWCNT solution and epoxy resin. FWCNT/binder hybrid films containing different amounts of the coupling agent were then fabricated on UV-ozone-treated glass substrates. To determine the critical binder content ($X_c$), the effects of varying the binder content in the FWCNT/silane hybrid films on their optoelectrical properties were investigated. In this system, the $X_c$ value was approximately 75 wt%. It was found that above $X_c$, the coupling agent effectively decreased the sheet resistance of the films. From microscopy images, it was observed that by adding the coupling agent, more uniform FWCNT/binder films were formed.

촉매화학기상증착법에 의한 단일벽 탄소나노튜브의 합성과 미세구조 (Synthesis and Microstructure of Single-Walled Carbon Nanotubes by Catalytic Chemical Vapor Deposition Method)

  • 김종식;김관하;김창일
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권7호
    • /
    • pp.359-363
    • /
    • 2006
  • Single-walled carbon nanotubes (SWCNTs) with few defects and very small amount of amorphous carbon coating have been synthesized by catalytic decomposition of methane in $H_2$ over well-dispersed metal particles supported on MgO. The yield of SWCNTs was estimated to be 88.5% and the purities of SWCNTs thus obtained were more than 90%. Peak of the radial breathing mode in the Raman spectrum demonstrated that the diameters of synthesized CNTs are in the range 0.4-2.0 nm. Our results also indicated that MgO support materials are useful to a large-scale synthesis of high-quality SWCNTs. Increasing temperature could remarkably increase the yield and also improve the quality of SWCNTs from catalytic decomposition of methane. The morphologies and microstructures of the synthesized carbon materials were characterized by scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray diffraction (XRD).

Effect of few-walled carbon nanotube crystallinity on electron field emission property

  • Jeong, Hae-Deuk;Lee, Jong-Hyeok;Lee, Byung-Gap;Jeong, Hee-Jin;Lee, Geon-Woong;Bang, Dae-Suk;Cho, Dong-Hwan;Park, Young-Bin;Jhee, Kwang-Hwan
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.207-217
    • /
    • 2011
  • We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.

Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects

  • Ouakad, Hassen M.;Sedighi, Hamid M.;Al-Qahtani, Hussain M.
    • Advances in nano research
    • /
    • 제8권3호
    • /
    • pp.245-254
    • /
    • 2020
  • This work examines the fundamental vibrational characteristics of a spinning CNT-based nano-rotor assuming a nonlocal elasticity Euler-Bernoulli beam theory. The rotary inertia, gyroscopic, and rotor mass unbalance effects are all taken into consideration in the beam model. Assuming a nonlocal theory, two coupled 6th-order partial differential equations governing the vibration of the rotating SWCNT are first derived. In order to acquire the natural frequencies and dynamic response of the nano-rotor system, the nonlinear equations of motion are numerically solved. The nano-rotor system frequency spectrum is shown to exhibit two distinct frequencies: one positive and one negative. The positive frequency is known as to represent the forward whirling mode, whereas the negative characterizes the backward mode. First, the results obtained within the framework of this numerical study are compared with few existing data (i.e., molecular dynamics) and showed an overall acceptable agreement. Then, a thorough and detailed parametric study is carried out to study the effect of several parameters on the nano-rotor frequencies such as: the nanotube radius, the input angular velocity and the small scale parameters. It is shown that the vibration characteristics of a spinning SWCNT are significantly influenced when these parameters are changed.

Carbon nanotube / silane hybride film for highly efficient field emitter

  • ;;;;이건웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.181-181
    • /
    • 2010
  • Few-walled carbon nanotubes (FWNTs)-based field emitters with long term stability are fabricated by using a spray method. Tetraethylorthosilicate (TEOS) sol as a binder was mixed with dispersed solution of FWNTs to enhance the adhesion of FWNTs on the cathode substrate. Due to the strong intermolecular interaction of TEOS to the functional groups attached on CNTs and substrate, CNTs are tightly adhered to the cathode electrode when heat treatment is performed at $150^{\circ}C$ for 1 hour, resulting in a stable electron emission of CNT emitters for long time. Excellent field emission characteristics were exhibited, with a large field enhancement factor and low turn-on voltage, comparable to those of CNT emitters fabricated by a screen printing of CNT paste. Therefore, FWNTs / TEOS hybrid films could be utilized as an alternative for the efficient and reliable field emitters.

  • PDF

티타늄 다공체에 담지된 Camphene과 화학기상증착법을 이용한 CNT 합성 (Synthesis of CNT on a Camphene Impregnated Titanium Porous Body by Thermal Chemical Vapor Deposition)

  • 김호규;최혜림;변종민;석명진;오승탁;김영도
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.122-128
    • /
    • 2015
  • In this study, titanium(Ti) meshes and porous bodies are employed to synthesize carbon nanotubes(CNTs) using methane($CH_4$) gas and camphene solution, respectively, by chemical vapor deposition. Camphene is impregnated into Ti porous bodies prior to heating in a furnace. Various microscopic and spectroscopic techniques are utilized to analyze CNTs. It is found that CNTs are more densely and homogeneously populated on the camphene impregnated Ti-porous bodies as compared to CNTs synthesized with methane on Ti-porous bodies. It is elucidated that, when synthesized with methane, few CNTs are formed inside of Ti porous bodies due to methane supply limited by internal structures of Ti porous bodies. Ti-meshes and porous bodies are found to be multi-walled with high degree of structural disorders. These CNTs are expected to be utilized as catalyst supports in catalytic filters and purification systems.

탄소나노튜브 가스센서의 SF6 분해생성물 검출 및 확산현상에 관한 연구 (Detection with a SWNT Gas Sensor and Diffusion of SF6 Decomposition Products by Corona Discharges)

  • 이종철;정세훈;백승현
    • 한국진공학회지
    • /
    • 제18권1호
    • /
    • pp.66-72
    • /
    • 2009
  • 가스절연개폐장치 (Gas-insulated switchgear, GIS)의 내부에는 절연에 관한 이상 여부를 감시하고 판단할 수 있는 시스템이 요구된다. 부분방전에 의해 발생되는 $SF_6$ 분해생성물에 관한 단일벽 탄소나노튜브 (Single-walled carbon nanotube, SWNT)가 지닌 우수한 검출기능 때문에 SWNT를 이용한 가스센서 개발이 활발히 진행되고 있다. 하지만 아직까지 부분방전에 의해 발생된 분해생성물의 확산현상에 관한 해석적 연구는 미흡한 실정이다. 본 논문에서는 실험 데이터 및 상용 CFD (Computational Fluid Dynamics) 프로그램을 이용하여 SWNT 가스센서에 포획되는 분해생성물의 코로나 방전에 의한 발생 과정과 챔버 내부에서의 확산과정을 모델링하여 부분방전 발생 시 챔버 내부의 온도, 압력, 그리고 분해생성물의 농도 등을 수치계산하였다. 분해생성물의 시간당 질량생성율과 발생온도는 각각 $5.04{\times}10^{-10}$ [g/s]와 773 K이라 가정하였다. 농도방정식을 계산함에 있어 미지의 확산계수를 임의의 값으로 가정하여 직접 부여하는 방법을 사용하지 않고, 확산계수를 정의하는데 사용되는 Schmidt수의 값을 지정하여 확산계수가 $SF_6$ 가스의 물성치인 점성계수와 밀도의 함수로 계산되도록 하였다. 수치결과로부터 분해생성물의 농도구배가 확산을 일으키는데 주요 구동포텐셜 (Drive potential)이 됨을 확인하였다. 센서 설치위치가 부분방전 발생영역에서 멀리 떨어질수록 분해생성물 농도가 낮음을 알 수 있었고, 부분방전이 지속될수록 분해생성물의 농도가 증가함을 확인하였다. 다수의 센서를 챔버 내부에 설치하면 각 센서의 응답시간을 확인하여 PD 발생위치를 판단할 수 있을 것이고, 이를 통해 GIS 진단 및 유지보수에 관한 유용한 정보로 사용될 수 있을 것이다.