• Title/Summary/Keyword: ferromagnetic materials

Search Result 322, Processing Time 0.05 seconds

Ferromagnetism and Anomalous Hall Effect in p-Zn0.99Mn0.01O:P

  • Kim, Hyun-Jung;Sim, Jae-Ho;Kim, Hyo-Jin;Hong, Soon-Ku;Kim, Do-Jin;Ihm, Young-Eon;Choo, Woong-Kil
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.95-98
    • /
    • 2005
  • We report hole-induced ferromagnetism in diluted magnetic semiconductor $Zn_{0.99}Mn_{0.01}$ films grown on $SiO_2/Si$ substrates by reactive sputtering. The p-type conduction with hole concentration over $10^{18}\;cm^{-3}$ is achieved by P doping followed by rapid thermal annealing at $800^{\circ}C$ in a $N_2$ atmosphere. The p-type $Zn_{0.99}Mn_{0.01}O:P$ is carefully examined by x-ray diffraction and transmission electron microscopy. The magnetic measurements for $p-Zn_{0.99}Mn_{0.01}O:P$ clearly reveal ferromagnetic characteristics with a Curie temperature above room temperature, whereas those for $n-Zn_{0.99}Mn_{0.01}O:P$ show paramagnetic behavior. The anomalous Hall effect at room temperature is observed for the p-type film. This result strongly supports hole-induced room temperature ferromagnetism in $p-Zn_{0.99}Mn_{0.01}O:P$.

Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites

  • Qian, Hui-Dong;Si, Ping-Zhan;Lim, Jung Tae;Kim, Jong-Woo;Park, Jihoon;Choi, Chul-Jin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1703-1707
    • /
    • 2018
  • Ferromagnetic ${\tau}-phase$ $Mn_{54}Al_{46}C_{2.44}$ particles were synthesized, and its composites with commercial $Sm_2Fe_{17}N_3$ and synthesized $Fe_{65}Co_{35}$ powders were fabricated. Smaller grain size than the single domain size of the $Mn_{54}Al_{46}C_{2.44}$ without obvious grain boundaries and secondary phases is the origin for the low intrinsic coercivity. It was confirmed that the magnetic properties of the $Mn_{54}Al_{46}C_{2.44}$ can be enhanced by magnetic exchange coupling with the hard magnetic $Sm_2Fe_{17}N_3$ and soft magnetic $Fe_{65}Co_{35}$. The high degrees of the exchange coupling were verified by calculating first derivative curves. Thermo-magnetic stabilities of the composites from 100 to 400 K were measured and compared. It was demonstrated that the $Mn_{54}Al_{46}C_{2.44}$ based composites containing $Sm_2Fe_{17}N_3$ and $Fe_{65}Co_{35}$ could be promising candidates for future permanent magnetic materials with the proper control of purity, magnetic properties, etc.

A Study on the Fabrication Process and Magnetic Properties of Buble Magnetic Materials. (버블자성재료의 제조 및 자기 특성에 관한 연구)

  • Park, Yong-Du;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.1040-1044
    • /
    • 1995
  • Magnetic garnet films of (YSmLuCa)$_3$(FeGe)$\_$5/O$\_$12/ have been grown by the liquid phase eqitaxy method on the substrate of non-magnetic garnet Gd$_3$Ga$\_$5/O$\_$12/. The variation of Sm ion concentration were varied 0.3, 0.4, 0.6, mole/formula unit respectively. The magnetic properties of the samples for the bubble magnetic materials, such as, line width ΔH of ferromagnetic resonance (FMR), magnetic saturation induction 4$\pi$Ms, wall mobility u$\_$w/ uniaxial magnetic anisotropy energy Ku, were measured and discussed the relations between these properties. The line width ΔH decreases with increasing 4$\pi$Ms, and with decreasing Sm concentration. The anisotropy energy Ku increases not only with increasing Sm ion concentration, but also increasing 4$\pi$Ms. The value of wall mobility u$\_$w/ increase with increasing 4$\pi$Ms and decreases with increasing Sm concentration. We define a physical constant Eι from the fact that the product of 4$\pi$Ms and ΔH is constant with dimension of energy density. The Eι is dependent only on Sm concentration.density. The Eι is dependent only on Sm concentration.

  • PDF

Nonequilibrium Domain Configurations Undergoing Large Angle Rotations in Mesoscopic Magnetic Thin Film Elements (retracted)

  • Choi, B.C.;Hong, Y.K.;Rudge J.;Donohoe G.;Xiao Q.F.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.61-65
    • /
    • 2006
  • The physical origin of complex dynamic domain configuration in nonequilibrium magnetic systems with mesoscopic length scales has been studied. An increasing complexity in the spatial feature of the evolution is found to accompany the increasing reversal speed, when a ferromagnetic element is driven by progressively faster switching fields applied antiparallel to the initial magnetization direction. As reversal rates approach the characteristic precession frequencies of spin fluctuations, the thermal energy can boost the magnetization into local configurations which are completely different from those experienced during quasistatic reversal. The sensitive dependence of the spatial pattern on switching speed can be understood in terms of a dynamic exchange interaction of thermally excited spins; the coherent modulation of the spins is strongly dependent on the rise time of switching pulses.

Precursor Process Designing to Synthesize Nano-sized Phosphors

  • Kim, Soo-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2006
  • We present the structural, magnetic, and electrical properties in the (Al,Mn)N films with various Mn concentrations grown by plasma-enhanced molecular beam epitaxy. X-ray diffraction analyses reveal that the (Al,Mn)N films have the wurtzite structure without secondary phases. All (Al,Mn)N films showed the ferromagnetic ordering. Particularly, ($Al_{1-x}Mn_{x}$)N film with x = 0.028 exhibited the highest magnetic moment per Mn atom at room temperature. Since all the films exhibit the insulating characteristics, the origin of ferromagnetism in (Al,Mn)N might be attributed to either indirect exchange interaction caused by virtual electron excitations from Mn acceptor level to the valence band within the samples or a percolation of bound magnetic polarons arisen from exchange interaction of localized carriers with magnetic impurities in a low carrier density regime.

A Study of Hysteresis Modeling Method for Magnetic Stealth of Ferromagnetic Materials (강자성체의 자기정숙을 위한 히스테리시스 모델링 기법 연구)

  • Won, Hyuk;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.884-885
    • /
    • 2011
  • A great deal of external magnetic variation is required to demagnetize a magnetic material. In order to analyze a demagnetization model, hysteresis is employed and the best numerical analysis technique so far, regarding hysteresis, is Preisach model. In general, Preisach model, however, bears the instability problem with respect to convergence and hence in this paper, a method adopting M-B variables is proposed to solve the problem. In addition, comparison is made between the experimental MTF equipment and the hysteresis modeling technique for the purpose of developing an effective demagnetization protocol.

  • PDF

Impedance Analysis of a Solenoid Eddy Current Coil with Cylindrical Two-conductor Rods (원통형 2-도체를 가진 솔레노이드 와전류 코일의 임피던스 해석)

  • 김성덕;이상래
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.89-98
    • /
    • 1998
  • Some analytic results for a solenoid eddy current coil to test nondestructive conducting materials are described in this paper. Normalized impedance of solenoid coil encircling cylindrical conducting tubes or tow-conductor rods is analyzed. Electrical and magnetic properties such as conductivity, permeability and exciting frequency as well as the geometric ones of fill factor or radius ratio of the conductor are also considered. Impedance characteristics of the models obtained by numerical analysis are examined. Validation of the model is carried out using several samples of non-ferromagnetic conducting tubes and 2-conductor rods.

  • PDF

Magnetic and Magneto-Optical Properties of Conjugated Polymers: A New Frontier

  • Gangopandhyay, Palash;Foerier, Stijn;Vangheluwe, M.;Koeckelberghs, Guy;Verbiest, Thiery;Persoons, Andr
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.23-24
    • /
    • 2006
  • Magnetic and magneto-optical properties of regioregular (>99%) poly(3-dodecylthiopenes are investigated. Faraday rotation of spin-coated films show extremely large Verdet constants, falling strongly with decreasing regioregularity. EPR spectroscopy at room temperature shows the presence of about 1 spin/190 monomers, indicative of delocalisation beyond a single polymer chain. SQUID measurements on the polymer give an effective magnetic moment of about 48900 mB, corrsponding to a S-value of 25.000. The Weiss-constant is 1.33 K indicating ferromagnetic coupling. Our experimental results show that organic polymer magnets can be prepared. Large MO effects allow the use of these materials in all-organic MO-sensors and devices.

  • PDF

Effect of Magnetic Field on the Dielectric Properties $BaTiO_3-MgFe_2O_4$ Composite

  • Tadi, Ravindar;Kim, Yong-Il;Kim, Cheol-Gi;Ryu, Kwon-Sang
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.06a
    • /
    • pp.93-95
    • /
    • 2011
  • In this study we tried to measure the effect of magnetic field on the dielectric properties of $BaTiO_3-MgFe_2O_4$ soft magnetic composite. Composites with different weight percents of ferroelectric and ferromagnetic phases were subjected to magnetic field in the order of 0 to 450 Oe and the variation of the dielectric properties was observed. The Variation of dielectric polarization was discussed in terms of Maxwell-Wagner type polarization in particulate composites.

  • PDF

Dynamic Modeling of an Fine Positioner Using Magnetic Levitation (자기 부상 방식 미세 운동 기구의 동적 모델링)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.