• Title/Summary/Keyword: ferromagnetic film

Search Result 150, Processing Time 0.025 seconds

Mn Thin Film on $BaTiO_3$ Substrate: Modified Electrical and Magnetic Properties

  • Tuan, Duong Anh;Cuong, Tran Viet;Shin, Yooleemi;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.162-162
    • /
    • 2013
  • Magnetic properties of 3d transition metals were determined by exchange interaction between magnetic ions that was characterized by the exchange integral. Bulk Mn material is one of transition metals that have been well known as an anti-ferromagnetic material due to an anti-parallel spin with negative exchange integral. Here we report on the MBE growth of Mn on $BaTiO_3$ (001) substrate and induced ferromagnetism. The bcc ${\alpha}$-Mn single crystal film has been grown on $BaTiO_3$ (100) substrate. The XRD and Raman results indicated that the structural phase transitions of $BaTiO_3$ substrate induced a lattice distortion at the interface. Consequently, the grown Mn film exhibits ferromagnetism with strong saturation magnetization of 495 emu/$cm^3$ at 320 K. The electrical resistivity of the Mn film strongly depended on the crystal structure of $BaTiO_3$ substrate.

  • PDF

RF Integrated Electromagnetic-Noise Filters Incorporated with Nano-granular Co41Fe38AI13O8 Soft Magnetic Thin Films on Coplanar Transmission Line

  • Sohn, Jae-Cheon;Yamaguchi Masahiro;Lim, Sang-Ho;Han, Suk-Hee
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.163-170
    • /
    • 2005
  • The RF integrated noise filters are fabricated by photolithography. The stack for the electromagnetic noise filters consists of the nano-granular ($Co_{41}Fe_{38}AI_{13}O_8$) soft magnetic film / $SiO_2$ / Cu transmission line / seed layer (Cu/Ti) / $SiO_2$-substrate. A good signal-attenuation feature along with a low signal-reflection feature is observed in the present filters. Especially in the noise filter incorporated with a $Co_{41}Fe_{38}AI_{13}O_8$ magnetic film with lateral dimensions of $2000{\mu}m$ wide, 15 mm long and $1{\mu}m$ thick, the maximum magnitude of signal attenuation reaches -55 dB, and the magnitude of signal reflection is below -10 dB in the overall frequency range. And this level of signal attenuation is much larger than that of a noise filter incorporated with a Fe magnetic film.

Characteristics variation of CoCrTa/Si double layer thin film on variation of underlayer substrate temperature (하지층기판온도에 따른 CoCrTa/Si 이층박막의 특성변화)

  • 박원효;김용진;금민종;가출현;손인환;최형욱;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.77-80
    • /
    • 2001
  • Crystallographic and magnetic characteristics of CoCr-based magnetic thin film for perpendicular magnetic recording media were influenced on preparing conditions. In these, there is that substrate temperature was parameter that increases perpendicular coercivity of CoCrTa magnetic layer using recording layer. While preparation of CoCr-based doublelayer, by optimizing substrate temperature, we expect to increase perpendicular anisotropy of CoCr magnetic layer and prepare ferromagnetic recording layer with a good quality by epitaxial growth. CoCrTa/Si doublelayer showed a good dispersion angle of c-axis orientation $\Delta$$\theta$$_{50}$ caused by inserting amorphous Si underlayer which prepared at underlayer substrate temperature 250C. Perpendicular coercivity was constant, in-plane coercivity was controlled a low value about 2000e. This result implied that Si underlayer could restrain growth of initial layer of CoCrTa thin film, which showed bad magnetic properties effectively without participating magnetization patterns of magnetic layer. In case of CoCrTa/Si that prepared with ultra thin underlayer, crystalline orientation of CoCrTa was improved rather underlayer thickness 1nm, it was expected that amorphous Si layer played a important role in not only underlayer but also seed layer.t also seed layer.r.

  • PDF

Ferromagnetic Resonance of Amorphous $Co_{1-\chi}Hf_\chi$ Thin Films (비정질 $Co_{1-x}Hf_x$ 박막의 강자성 공명)

  • 백종성;김약연;이성재;임우영;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.129-133
    • /
    • 1997
  • To investigate the influence of the Hf concentration and the annealing effect in $Co_{1-x}Hf_x$(X=0.16, 0.24 at.%) systems, ferromagnetic resonance experiments have been carried out. Spin wave resonance spectra for all samples consist of several volume modes and one (or two) surface mode. It is suggested that both surfaces of the film have a perpendicular hard axis to the film plane (negative surface anisotropy). The surface anisotropy $K_{s2}$ at substrate-film interface is varied slowly from -0.07 to -0.32 erg/$\textrm{cm}^2$ and the surface anisotropy $K_{s1}$ at film-air interface is varied from 0.18 to -0.47 erg/ $\textrm{cm}^2$ with increasing annealing temperature in the amorphous $Co_{84}Hf_{16}$ thin films. Also, the surface anisotropy $K_{s2}$ is varied slowly from -0.31 to -0.41 erg/$\textrm{cm}^2$ and the surface anisotropy $K_{s1}$is varied from -0.19 to -0.60 erg/$\textrm{cm}^2$ with increasing annealing temperature in the amporphous $Co_{84}Hf_{16}$ thin films. We conjecture that the variation of surface anisotropy $K_{s1}$ is due to the increase of Co concentration resulted from Hf oxidation for low temperature annealing(150~175 $^{\circ}C$) and the diffusion of Co atoms near the film surfaces for high temperature annealing (200~225 $^{\circ}C$).

  • PDF

High Density MRAM Device Technology Based on Magnetic Tunnel Junctions (자기터널접합을 활용한 고집적 MRAM 소자 기술)

  • Chun, Byong-Sun;Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.186-191
    • /
    • 2006
  • Ferromagnetic amorphous $Ni_{16}Fe_{62}Si_8B_{14}$ and $Co_{70.5}Fe_{4.5}Si_{15}B_{10}$ layers have been devised and incorporated as free layers of magnetic tunnel junctions (MTJs) to improve MRAM reading and writing performance. The NiFeSiB and CoFeSiB single-layer film exhibited a lower saturation magnetization ($Ms=800emu/cm^3,\;and\;560emu/cm^3$, respectively) compared to that of a $Co_{90}Fe_{10}(Ms=1400emu/cm^3)$. Because amorphous ferromagnetic materials have lower Ms than crystalline ones, the MTJs incorporating amorphous ferromagnetic materials offer lower switching field ($H_{sw}$) values than that of the traditional CoFe-based MTJ. The double-barrier MTJ with an amorphous NiFeSiB free layer offered smooth surface resulting in low bias voltage dependence, and high $V_h\;and\;V_{bd}$ compared with the values of the traditional CoFe-based MTJ.

Giant Magnetoresistance Behavior and the Effect of Ferromagnetic Layer on the Co-Ag Nano-granular Alloy Films (Co - Ag 합금박막의 거대자기저항 및 강자성 상하지층의 효과)

  • 김용혁;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.31-37
    • /
    • 1997
  • The magnetoresistance and the saturation field behavior of the Co-Ag nano granular films as a function of the composition and the ferromagnetic underlayer and overlayermaterials were investigated. The maximum magnetoresistance of 23% and the saturation field of 2.3 kOe at room temperature were obtained in the as-deposited 3000$\AA$ $Co_{30}Ag_{70}$ single alloy films. The magnetoresistance and the saturation field of 100$\AA$ $Co_{30}Ag-{70}$ alloy film were 3.65 % and 3.0 kOe respectively. Those of the sandwiched films with 200$\AA$ Fe were 3.3 % and 1.23 kOe respectively. The saturation field of the sandwiched alloy films could be reduced by the exchange coupling between the ferromagnetic layers and the alloy layer. The effective depth of the exchange coupling was approximately 150$\AA$ in each Fe layer. Among the Fe, Co, and FeNi, the most effective materials to reduce the saturation field of the sandwiched alloy films was Fe.

  • PDF

Colossal magnetoresistance of double-ordered perovskite $Sr_{2}FeMoO_{6}$ ceramics and sputter-deposited films ($Sr_{2}FeMoO_{6}$ 소결체와 스퍼터링법으로 제조된 박막의 초거대자기저항현상에 관한 연구)

  • 이원종;장원위
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2002
  • Abstract The stoichiometric and double-ordered perovskite $Sr_2FeMoO_6$ (SFMO) polycrystalline ceramics were fabricated by sintering at above $900^{\circ}C$ in $H_2$(5%)/Ar reductive ambient. SMO polycrystals showed good ferromagnetic properties andmagnetrotesistqnce ratios of about 15 % at 8K and 3 % at room temperature. Amorphous SFMO thin films were deposited on $LaA1O_3$ and $SrTiO_3$ single crystal substrates using rf sputtering method with the SFMO polycrystalline ceramic target. Double-ordered perovskite polycrystalline SFMO thin films were fabricated by solid state crystallization by annealing the deposited amorphous films at above $680^{\circ}C$ in $H_2$(5%)/Ar reductive ambient. SFMO thin films exhibited ferromagnetic behavior. Their magnetroresistance ratios, however, were only 0.3~0.5% at 8K and disappeared with increasing the measuring temperature. This was attributed to the absence of magnetic spin tunneling between grains due to the porous structure and non-stoichiometric composition of the deposited films.

Magnetization Behavior of CoB/Ru/CoB Thin Film (CoB/Ru/CoB 박막 재료의 자화 거동 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.154-158
    • /
    • 2013
  • We have analyzed the magnetization curves measures by using VSM and MOKE in synthetic antiferromagnetic coupled CoB/Ru/CoB thin film. The measured results were compared with calculated ones by Stoner-Wohlfarth model based on the magnetization behavior of two ferromagnetic layers ($M_1$, $M_2$). The calculated total magnetization ($M_{tot}=M_1+M_2$) and single layer magnetization($M_1$) behaviors were compared with measured results by using VSM and MOKE, respectively. The total magnetization curve ($M_{tot}=M_1+M_2$) showed reversible magnetization behavior with flopping field of about 50 Oe. While single layer magnetization ($M_1$) behaviors showed irreversible magnetization behavior in the field range of $H_F$ < H < $H_F$. These magnetization behaviors were explained by the angle difference between magnetization directions of two ferromagnetic layers in SAF sample.

Room temperature ferromagnetism in diluted magnetic semiconductor $Zn_{l-x}Cr_xTe$

  • Ando, K.;Saito, H.;Zayets, V.;Yamagata, S.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.266-267
    • /
    • 2003
  • The most distinguishing character of diluted magnetic semiconductors (DMSs) is a strong interaction between sp-carriers and localized d-spins (sp-d exchange interaction). Recently many "room-temperature (RT) ferromagnetic DMS" have been reported. However, it should be noted that their sp-d exchange interactions have not been confirmed yet. The lack of a clear evidence of the sp-d exchange interaction causes the controversy on the origin of the observed ferromagnetism. For the detection of the sp-d exchange interaction, magneto-optical spectroscopy such as a magnetic circular dichroism (MCD) measurement is the most powerful tool. By using the MCD spectroscopy, we have shown the sp-d exchange interactions in Zn$_{l-x}$Cr$_{x}$Te. Recently, we have obtained the RT ferromagnetism in a Zn$_{l-x}$Cr$_{x}$Te (x = 0.20) film.0) film.

  • PDF

Magnetoresistance behavior of $La_{1-\chi}Sr_\chiCoO_{3-\delta}$ films around the metal-insulator transition

  • Park, J. S.;Park, H. G.;Kim, C. O.;Lee, Y. P.;V. G. Prokhorov
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.100-103
    • /
    • 2003
  • The magnetoresistance (MR) of $La_{1-\chi}S_{\chi}CoO_{3-\delta}$ films prepared by pulsed-laser deposition were investigated in order to clarify the magnetotransport properties around the metal-insulator transition. For the films in the metallic state ($\chi$ > 0.25), the MR(T) manifests a small peak at the Curie temperature due to the spin-disorder scattering. The transition of the film into the insulating state ($\chi\;\leq$ 0.25) is accompanied by an essential growth of the MR and results in a significant increase in the MR(T) with decreasing temperature, due to a phase separation into the ferromagnetic-metal clusters and the insulating matrix.