• Title/Summary/Keyword: ferritin protein

Search Result 113, Processing Time 0.035 seconds

Characterization of Ferritin Isolated from Dog Spleen (개의 비장에서 분리한 페리틴의 특성)

  • Park Jae-Hag;Jun Do Youn;Kim Young Ho
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.439-446
    • /
    • 2005
  • Ferritin is known to be the principle iron-storage protein in a wide variety of rganisms. The electro­phoretic mobility and immunological cross-reactivity of dog splenic ferritin were compared with those of horse, bovine, and pig splenic ferritin after isolation using heat treatment, salting out, column chromatography, and ultrafiltration. These isolation methods allowed the recovery of $\~84{\mu}g$ of the ferritin per g of spleen. The iron content in the dog ferritin was $22.7\%$, which appeared to be higher than those in the other mammalian ferritins tested. The electrophoretic mobility of the dog ferritin under nondenaturing conditions was similar to its bovine counterpart, whereas it was more identical to pig and horse ferritins on an SDS-polyacrylamide gel. The molecular weight of the dog ferritin subunit was 19.5 kDa on an SDS-polyacrylarnide gel, and the subunit was unable to bind with iron. The polyclonal anti-dog ferritin raised in rats was able to cross-react with the pig, bovine, and horse ferritins, upon Ouchterlony double immunodiffusiion. A Western blot analysis also revealed that the anti-dog ferritin, which specifically bound with the dog ferritin subunit, could also recognize the horse, bovine, and pig ferritin subunits and the maximum cross-reactivity was exhibited with the pig ferritin subunit, indicating that the dog ferritin is immunochemically more similar to the pig ferritin than its other mammalian counterparts. Accordingly, these results elucidate the biochemical and immunochemical characteristics of dog ferritin that might have a potential to be applied as an oral iron supplement to treat iron deficiency anemia.

Tissues and Plasma Proteins of Hemiculter eigenmanni in Muddy Water of Imha Reservoir (임하호 탁수역에 서식하는 치리 (Hemiculter eigenmanni)의 조직과 혈장단백질)

  • Lee, Chung;Shin, Myung-Ja;Lee, Jong-Eun;Seo, Eul-Won
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.3
    • /
    • pp.213-220
    • /
    • 2006
  • Present study aims to investigate the effect of muddy water on various tissues and plasma proteins of Hemiculter eigenmanni in Imha reservoir. The gills in muddy water were shown to have clubbing in secondary lamellae and edema in primary lamellae, respectively. The size of glomerula in kidney was smaller than that of control. Scanning electron micrographs of gills revealed muddy debris and parasites attached between primary and secondary lamellae, suggesting that muddy water possibly involves to decrease in respiratory rate. By using SDS-PAGE, plasma protein bands displayed both quantitative and qualitative changes and ferritin activities were shown more stronger and Fe-3 ferritin band appeared to be specific to plasma of muddy water.

Differentiation between incomplete Kawasaki disease and secondary hemophagocytic lym­phohistiocytosis following Kawasaki disease using N­-terminal pro­-brain natriuretic peptide

  • Choi, Jung Eun;Kwak, Yujin;Huh, Jung Won;Yoo, Eun-Sun;Ryu, Kyung-Ha;Sohn, Sejung;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.5
    • /
    • pp.167-173
    • /
    • 2018
  • Purpose: Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome with many causes, including Kawasaki disease (KD). The purpose of this study was to identify the laboratory tests needed to easily differentiate KD with HLH from incomplete KD alone. Methods: We performed a retrospective study on patients diagnosed with incomplete KD and incomplete KD with HLH (HLH-KD) between January 2012 and March 2015. We compared 8 secondary HLH patients who were first diagnosed with incomplete KD with all 247 incomplete KD diagnosed patients during the study period. The complete blood count, erythrocyte sedimentation rate, platelet count, and serum total protein, albumin, triglyceride, C-reactive protein, N-terminal pro-brain natriuretic peptide (NT-proBNP), and ferritin levels were compared. Clinical characteristics and echocardiography findings were also compared between the 2 groups. Results: The total duration of fever was longer in the HLH-KD group than in the KD group. White blood cell and platelet counts were higher in the KD group. Alanine aminotransferase, ferritin, and coronary artery diameter were increased in the HLH-KD group compared with those in the KD group. The median of NT-proBNP was significantly higher in the HLH-KD group than in the KD group at 889.0 (interquartile range [IQR], 384.5-1792.0) pg/mL vs. 233.0 (IQR, 107.0-544.0) pg/mL. Conclusion: The NT-proBNP level may be helpful in distinguishing incomplete KD from KD with HLH. The NT-proBNP level should be determined in KD patients with prolonged fever, in addition to the white blood cell count, platelet count, and ferritin level, to evaluate secondary HLH.

$In$ $vitro$ MRI and Characterization of Rat Mesenchymal Stem Cells Transduced with Ferritin as MR Reporter Gene (페리틴 리포터 유전자를 발현하는 백서 중간엽 줄기세포의 특성과 자기공명영상 연구)

  • Shin, Cheong-Il;Lee, Whal;Woo, Ji-Su;Park, Eun-Ah;Kim, Pan-Ki;Song, Hyun-Bok;Kim, Hoe-Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Purpose : This study was performed to evaluate the characteristics of rat mesenchymal stem cells (RMSCs) transduced with human ferritin gene and investigate $in$ $vitro$ MRI detectability of ferritin-transduced RMSCs. Materials and Methods: The RMSCs expressing both myc-tagged human ferritin heavy chain subunit (myc-FTH) and green fluorescence protein (GFP) were transduced with lentiviurs. Transduced cells were sorted by GFP expression using a fluorescence-activated cell sorter. Myc-FTH and GFP expression in transduced cells were detected by immunofluorescence staining. The cell proliferative ability and viability were assessed by MTT assay. The RMSC surface markers (CD29+/CD45-) were analyzed by flow cytometry. The intracellular iron amount was measured spectrophotometically and the presence of ferritin-iron accumulation was detected by Prussian blue staining. $In$ $vitro$ magnetic resonance imaging (MRI) study of cell phantoms was done on 9.4 T MR scanner to evaluate the feasibility of imaging the ferritin-transduced RMSCs. Results: The myc-FTH and GFP genes were stably transduced into RMSCs. No significant differences were observed in terms of biologic properties in transduced RMSCs compared with non-transduced RMSCs. Ferritin-transduced RMSCs exhibited increased iron accumulation ability and showed significantly lower $T_2$ relaxation time than non-transduced RMSCs. Conclusion: Ferritin gene as MR reporter gene could be used for non-invasive tracking and visualization of therapeutic mesenchymal stem cells by MRI.

Causes of Hyperferritinemia and Red Blood Cell Transfusion (고페리틴혈증의 원인과 적혈구 수혈)

  • Kim, Mi Seon;Kim, Sun Hyung
    • The Korean Journal of Blood Transfusion
    • /
    • v.29 no.3
    • /
    • pp.273-281
    • /
    • 2018
  • Background: Ferritin is used to detect iron overload in patients with chronic red blood cell transfusions. Although ferritin reflects the amount of iron storage in the body, it may increase nonspecifically in inflammation and infection. This study analyzed the cause of increased ferritin and the association with a red blood cell (RBC) transfusion. Methods: The medical records of patients who visited the authors' hospital from January to December 2017 and underwent a ferritin test were reviewed retrospectively. Hyperferritinemia was defined as a ferritin level more than 1,000 ng/mL. The causes of hyperferritinemia were investigated by examining the laboratory findings and medical records. Results: The results revealed 417 cases of hyperferritinemia in 238 patients during the period. The most common diseases were hematologic malignancies from 125 cases (30.0%) in 31 patients and infectious diseases were the second most common. Iron overload was suspected in 119 cases in 33 patients, and 12 patients (76 cases) were transfused with more than 8 units of RBC for 1 year before the test. Conclusion: In hyperferritinemia, the rate of iron overload is high considering the underlying diseases and chronic RBC transfusion. To determine iron storage status accurately, it will be helpful to measure the C-reactive protein (CRP) and iron saturation in the ferritin test. Careful attention should be paid to habitual iron formulations and frequent transfusions due to the possibility of iron overload.

Crystal Structure of Ferrihydrite Nanoparticles Synthesized in Ferritin

  • Kim, Sung-Won;Seo, Hyang-Yim;Lee, Young-Boo;Park, Young-Seog;Kim, Kyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1969-1972
    • /
    • 2008
  • In this study, horse spleen apoferritins were induced to form biominerals using up to 3000 Fe atoms per protein molecule. The morphology and crystallinity of the nanometer-sized biominerals formed in the ferritins were then analyzed using field emission-energy filtering-transmission electron microscopy (FE-TEM). The ferritins were found to have reconstitution yields of 60-70% in the experiments. The mean core size of the ferritins varied somewhat with protein concentrations, indicating that crystal growth in ferritins could be controlled via protein concentrations. The core mineral size increased with the amount of Fe used. Lattice fringes of the core, associated with good crystallinity, were found in all samples. The lattice fringe images of a single domain ferrihydrite mineral appeared frequently in the (011) planes (d-spacing of 0.246 nm) under [100] zone axis in all samples of this study. In addition, the lattice image occasionally revealed fringes corresponding to the (100) planes (d = 0.254 nm) from the [001] zone axis, indicating the characteristic pattern of hexagonal crystal lattice. Diffraction patterns in the minerals identified as ferrihydrite were fitted well into the space group of $P3_{1c}$.

In Vitro Formation of Protein Nanoparticle Using Recombinant Human Ferritin H and L Chains Produced from E. coli

  • RO HYEON SU;PARK HYUN KYU;KIM MIN GON;CHUNG BONG HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.254-258
    • /
    • 2005
  • We have conducted in vitro reconstitution study of ferritin from its subunits FerH and FerL. For the reconstitution, FerH was produced from an expression vector construct in Escherichia coli and was purified from a heat treated cell extract by using one-step column chromatography. FerL was expressed as inclusion bodies. The denatured form of FerL was obtained by a simple washing step of the inclusion bodies with 3 M urea. The reconstitution experiment was conducted with various molar ratios of urea-denatured FerH and FerL to make the ferritin nanoparticle with a controlled composition of FerH and FerL. SDS-PAGE analysis of the reconstituted ferritins revealed that the reconstitution required the presence of more than 40 molar$\%$ of FerH in the reconstitution mixture. The assembly of the subunits into the ferritin nanoparticle was confmned by the presence of spherical particles with diameter of 10 nm by the atomic force microscopic image. Further analysis of the particles by using a transmission electron microscope revealed that the reconstituted particles exhibited different percentages of population with dense iron core. The reconstituted ferritin nanoparticles made with molar ratios of [FerH]/[FerL]=l00/0 and 60/40 showed that 80 to $90\%$ of the particles were apoferritin, devoid of iron core. On the contrary, all the particles formed with [FerH]/[FerL]=85/ 15 were found to contain the iron core. This suggests that although FerH can uptake iron, a minor portion of FerL, not exceeding $40\%$ at most, is required to deposit iron inside the particle.

Proteomic Analysis of Recombinant Saccharomyces cerevisiae upon Iron Deficiency Induced via Human H-Ferritin Production

  • Seo, Hyang-Yim;Chang, Yu-Jung;Chung, Yun-Jo;Kim, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1368-1376
    • /
    • 2008
  • In our previous study, the expression of active H-ferritins in Saccharomyces cerevisiae was found to reduce cell growth and reactive oxygen species (ROS) generation upon exposure to oxidative stress; such expression enhanced that of high-affinity iron transport genes (FET3 and FTR1). The results suggested that the recombinant cells expressing H-ferritins induced cytosolic iron depletion. The present study analyzes metabolic changes under these circumstances via proteomic methods. The YGH2 yeast strain expressing A-ferritin, the YGH2-KG (E62K and H65G) mutant strain, and the YGT control strain were used. Comparative proteomic analysis showed that the synthesis of 34 proteins was at least stimulated in YGH2, whereas the other 37 proteins were repressed. Among these, the 31 major protein spots were analyzed via nano-LC/MS/MS. The increased proteins included major heat-shock proteins and proteins related to endoplasmic reticulum-associated degradation (ERAD). On the other hand, the proteins involved with folate metabolism, purine and methionine biosynthesis, and translation were reduced. In addition, we analyzed the insoluble protein fractions and identified the fragments of Idh1p and Pgk1p, as well as several ribosomal assembly-related proteins. This suggests that intracellular iron depletion induces imperfect translation of proteins. Although the proteins identified above result from changes in iron metabolism (i.e., iron deficiency), definitive evidence for iron-related proteins remains insufficient. Nevertheless, this study is the first to present a molecular model for iron deficiency, and the results may provide valuable information on the regulatory network of iron metabolism.

Identification of Protein Markers Specific for Papillary Renal Cell Carcinoma Using Imaging Mass Spectrometry

  • Na, Chan Hyun;Hong, Ji Hye;Kim, Wan Sup;Shanta, Selina Rahman;Bang, Joo Yong;Park, Dongmin;Kim, Hark Kyun;Kim, Kwang Pyo
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.624-629
    • /
    • 2015
  • Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.

Glycosylation of Protein by Conjugation of Periodate-Oxidized Sugars (과요오드산 산화당에 의한 인공 당단백질의 조제)

  • Ann, Yong-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.62-67
    • /
    • 1999
  • Periodate-oxidized soluble starch and maltohexaose, maltotetraose, maltose, and glyceraldehyde reacted with sweet potato ${\beta}-amylase$, wheat ${\beta}-amylase$, aldolase, bovine serum albumin, catalase, carboxypeptidase, ferritin and pronase. Electrophoretical mobility of modified proteins was different from that of native proteins, and modified proteins were stained with periodic acid-Schiff while native proteins did not stain. This results means that oxidized sugars attached on proteins. This bond is based on the Schiffs base between CHO group of oxidized sugar and ${\varepsilon}-NH_2$ group of lysine of protein. There is no changed UV absorption spectrum of sweet potato ${\beta}-amylase$ modified with oxidized soluble starch, in comparison with native enzyme.

  • PDF