• 제목/요약/키워드: ferrite-austenite

검색결과 211건 처리시간 0.027초

급속응고한 고합금 고속도 공구강의 미세조직 특성 (Microstructural Characteristics of Rapidly Solidified Highly Alloyed High Speed Tool Steels)

  • 이인우;김명호
    • 한국주조공학회지
    • /
    • 제15권3호
    • /
    • pp.242-251
    • /
    • 1995
  • Highly alloyed high speed tool steels(ASP steels) were rapidly solidified by melt spinning process, and the microstructures of melt spun tool steel ribbons were examined by optical microscopy and transmission electron microscopy with energy dispersive x-ray spectroscope. The microstructure of melt spun tool steel ribbon was found to be consisted of ${\delta}-ferrite$ cells surrounded by austenite and V-rich MC carbides. The size of ${\delta}-ferrite$ cells and intercellular MC carbides were about $0.4{\mu}m$ or less and 30nm or less, respectively. From the melt spun tool steel ribbons, only the MC type carbide phase was observed, instead of $M_2C$, $M_{23}C_6$ and $M_6C$ carbides which were generally observed in other rapidly solidified high speed steels. Such a change in type of carbide phase formed could be attributed to the increase in alloying content of vanadium and carbon. However, changes in microsturcture of melt spun tool steels with alloying content of cobalt, vanadium and carbon were not observed.

  • PDF

22Cr 린 듀플렉스 스테인리스강의 공식저항성에 미치는 Mn과 Ni 첨가의 영향 (Effect of Alloying Elements of Mn and Ni on the Pitting Corrosion Resistance of 22Cr Lean Duplex Stainless Steel)

  • 안용식;배근국
    • 동력기계공학회지
    • /
    • 제16권5호
    • /
    • pp.76-82
    • /
    • 2012
  • Duplex stainless steels have the dual microstructure of austenite and ferrite phases. This steel exhibits generally a high corrosion resistance and higher mechanical strength compared with austenitic stainless steels. The steels used in the investigation have the chemical composition of Fe-22Cr-xNi-yMn-0.2N in which the contents of Ni and Mn were varied with maintaining the equal [Ni/Cr] equivalent. The fraction of ferrite phase was increased with the increase of annealing temperature. The impact factor of Mn element on the [Ni] equivalent was amended on the basis of the results of the investigation. 4Mn-2Ni alloy showed the highest pitting corrosion resistance. The fraction ratio, grain size and misorientation angle between grains were measured, and the correlation with pitting potential was investigated.

Role of residual ferrites on crevice SCC of austenitic stainless steels in PWR water with high-dissolved oxygen

  • Sinjlawi, Abdullah;Chen, Junjie;Kim, Ho-Sub;Lee, Hyeon Bae;Jang, Changheui;Lee, Sanghoon
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2552-2564
    • /
    • 2020
  • The crevice stress corrosion cracking (SCC) susceptibility of austenitic stainless steels was evaluated in simulated pressurized water reactor (PWR) environments. To simulate the abnormal condition in temporary clamping devices on leaking small bore pipes, crevice bent beam (CBB) tests were performed in the oxygenated as well as hydrogenated conditions. No SCC cracks were found for SS316 in both conditions. SS304 also showed good resistance in the hydrogenated condition. However, all SS304 specimens showed SCC cracks in the oxygenated condition, indicating poor crevice SCC resistance. It was found that residual ferrites were selectively dissolved because of the galvanic corrosion coupled with the neigh-bouring austenite phase, resulting in SCC initiation in SS304. Crack morphologies were mostly transgranular assisted by the damaged δ-ferrite and deformation-induced slip bands.

F316 오스테나이트 스테인리스강의 상변태 및 입계부식저항성에 미치는 입열의 영향 (Effects of Heat Inputs on Phase Transformation and Resistance to Intergranular Corrosion of F316 Austenitic Stainless Steel)

  • 정규석;이인성;김순태
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.146-155
    • /
    • 2020
  • To elucidate the effect of heat inputs on phase transformation and resistance to intergranular corrosion of F316 austenitic stainless steel (ASS), thermodynamic calculations of each phase and time-temperature-transformation diagram were conducted using JMaPro simulation software, oxalic acid etch test, double-loop electrochemical potentiokinetic reactivation test (DL-EPR), field emission scanning electron microscopy with energy dispersive spectroscopy, and transmission electron microscopy analyses of Cr carbide (Cr23C6), austenite phase and ferrite phase. F316 ASS containing a relatively low C content of 0.043 wt% showed a slightly sensitized microstructure (acceptably dual structure) due to a small amount of Cr carbide precipitated at heat affected zone irrespective of heat inputs. Based on results of DL-EPR test, although heat input was increased, the ratio of Ir to Ia was only increased very slightly due to a slight sensitization. Therefore, heat inputs have little influences on resistance to intergranular corrosion of F316 austenitic stainless steel containing 0.043 wt% C.

Mechanism of Surface Corrosion in the Continuous Casting Guide Rolls

  • Fazlollah Sadeghi;Tahereh Zargar;Yoon-Uk Heo;Jae Sang Lee;Dong-Yong Park;NamKyu Park;Dae Geun Hong;Chang Hee Yim
    • 한국주조공학회지
    • /
    • 제43권2호
    • /
    • pp.55-63
    • /
    • 2023
  • Due to the importance of the surface on the final slab quality, it is essential to maintain a smooth segment roll surface that is in touch with the thin solid shell during solidification. In this paper, the surface of the used continuous casting guide roll was analyzed to realize the mechanism of its surface deterioration. Surface analysis has revealed severe corrosion at two distinct areas leading to deep roughness occurring on the guide roll. Firstly, the severe corrosion follows prior austenite grain boundary due to exposure with acidic environment. Also, in heat affected zone (HAZ) where two cladding beads overlap, more severe corrosion takes place. The overheat input results in local ferritization without full melting which increases retained δ-ferrite content almost 10 times higher than surrounding area. Corrosion was observed to happen at the δ-γ interface where Cr depletion takes place.

등온 열처리에 따른 중탄소 베이나이트강의 미세조직과 기계적 특성 (Effect of Isothermal Heat Treatment on the Microstructure and Mechanical Properties of Medium-Carbon Bainitic Steels)

  • 이지민;이상인;임현석;황병철
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.522-527
    • /
    • 2018
  • This study investigates the effects of isothermal holding temperature and time on the microstructure, hardness and Charpy impact properties of medium-carbon bainitic steel specimens. Medium-carbon steel specimens with different bainitic microstructures are fabricated by varying the isothermal conditions and their microstructures are characterized using OM, SEM and EBSD analysis. Hardness and Charpy impact tests are also performed to examine the correlation of microstructure and mechanical properties. The microstructural analysis results reveal that granular bainite, bainitic ferrite, lath martensite and retained austenite form differently in the specimens. The volume fraction of granular bainite and bainitic ferrite increases as the isothermal holding temperature increases, which decreases the hardness of specimens isothermally heat-treated at $300^{\circ}C$ or higher. The specimens isothermally heat-treated at $250^{\circ}C$ exhibit the highest hardness due to the formation of lath martensite, irrespective of isothermal holding time. The Charpy impact test results indicate that increasing isothermal holding time improves the impact toughness because of the increase in volume fraction of granular bainite and bainitic ferrite, which have a relatively soft microstructure compared to lath martensite for specimens isothermally heat-treated at $250^{\circ}C$ and $300^{\circ}C$.

25Cr-7Ni-4Mo 수퍼 2상 스테인리스강의 충격인성에 미치는 χ의 영향 (Effect of χ Phase on the Impact Toughness of 25Cr-7Ni-4Mo Super Duplex Stainless Steel)

  • 강창룡;한현성;이상희;한태수
    • 열처리공학회지
    • /
    • 제25권2호
    • /
    • pp.74-79
    • /
    • 2012
  • This study has been carried out to investigate the precipitation behavior of ${\chi}$ phase and effect of ${\chi}$ phase precipitation on the impact toughness of 25%Cr-7%Ni-4%Mo super duplex stainless steel. It was proved that the ${\chi}$ phase was a intermetallic compound, which represented the higher chromium and molybdenum concentration than the matrix phases, and also showed the higher molybdenum concentration than the ${\sigma}$ phase. The ${\chi}$ phase was precipitated at the interface between ferrite and austenite or inside the ferrite matrix in the early stage of aging. The number of ${\chi}$ phase precipitates increased with increasing aging time, however, after showing the maximum value, the number was decreased due to the gradual transformation of ${\chi}$ phase into ${\sigma}$-phase. Aging ferrite phase was decomposed by the $r^2$ phase and ${\sigma}$-phase. Impact toughness rapidly decreased with time in the initial stage of aging at ${\chi}$ phase start to precipitate. Thus, the impact toughness was greatly influence for the precipitation of ${\chi}$ phase.

304 스테인리스 강의 가공유기 마르텐사이트와 기계적 거동에 미치는 온도의 영향 (Effects of annealing temperature on strain-induced martensite and mechanical properties of 304 stainless steel)

  • 이상훈;최점용;남원종
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.203-206
    • /
    • 2008
  • Transformation of austenite to martensite during cold rolling has been widely used to strengthen metastable austenitic stainless steel grades. Aging treatment of cold worked metastable austenitic stainless steels, including ${\alpha}'$-martensite phase, results in the further increase of strength, when aging is performed in $200^{\circ}C$ to $450^{\circ}C$ temperature range. The purpose of the present study was to evaluate the effect of time and temperature on the stress-strain behavior of cold worked austenitic stainless steels. The amount of ${\alpha}'$-martensite during cold working and aging was examined by ferrite scope and X-ray diffraction (XRD). During aging at $450^{\circ}C$ for 1hr, tensile strength dramatically increased by 150MPa. Deformed metastable austenitic steels containing the "body-centered" ${\alpha}'$-martensite are strengthened by the diffusion of interstitial solute atoms during aging at low temperature.

  • PDF

슈퍼 듀플렉스 스테인리스강의 응고·냉각 시 상석출에 미치는 냉각속도의 영향 (Influence of the Cooling Rate on the Phase Precipitation of Super Duplex Stainless Steel)

  • 장은석;김기영;김석준
    • 한국주조공학회지
    • /
    • 제35권2호
    • /
    • pp.23-28
    • /
    • 2015
  • This work presents the effect of the cooling rate on the precipitation of super duplex stainless steel. Specimens of super duplex stainless steel with a specific composition were cooled at various cooling rates after being melted at $1550^{\circ}C$ in a directional solidification furnace. Ferrite (${\delta}$), Austenite (${\gamma}$), Sigma (${\sigma}$), and Chi (${\chi}$) phases were precipitated when the cooling rate was lower than 0.22 K/s. When the cooling rate was 0.22 K/s or faster, ${\sigma}$ and ${\chi}$ phases were not precipitated.

저탄소강의 미세조직과 집합조직에 대한 탄소의 영향 (Effect of Carbon on Microstructure and Texture in Low Carbon Steels)

  • 정우창
    • 열처리공학회지
    • /
    • 제27권2호
    • /
    • pp.79-89
    • /
    • 2014
  • The effect of carbon on the microstructure and texture of low carbon steels was investigated in a series of 1.6 Mn-0.3Cr-0.2Mo-0.001B steels with carbon ranging from 0.021 to 0.048%. Intensity of {111} orientation increased with decreasing the carbon content, resulting in the increase in $r_m$ value. The highest $r_m$ value of 1.30 was obtained in 0.021%C steel annealed at $820{\sim}850^{\circ}C$ according to the typical galvannealing heat cycle. Martensite volume fraction was not substantially affected by the annealing temperature. It was found that the fine and uniformly distributed martensite particles which were present in amounts of about 5% volume fraction were desirable for the highest $r_m$ value. The other factor affecting the high $r_m$ value was the preferred epitaxial growth of retained ferrite with {111} orientation into austenite during cooling.