• Title/Summary/Keyword: ferrite substrate

Search Result 44, Processing Time 0.026 seconds

Characterization of Metal/Cobalt Ferrite Magnetic Thin Films

  • Park, C.H.;Na, J.G.;Heo, N.H.;Lee, S.R.;Kim, J.;Park, K.
    • Journal of Magnetics
    • /
    • v.3 no.1
    • /
    • pp.31-35
    • /
    • 1998
  • Metal/cobalt ferrite composite thin films with the saturation magnetization (M_s$)of~580 emu/cm3 and the coercivity(Hc) of 1700 Oe were prepared by the reactive sputtering. With increasing substrate temperature, Ms of the thin films increased, while Hc of the thin films decrease. This sttributed to the precipitation of $Co_xFe_{1-x}(x {\appro}x0.62)$ metal phase in the thin films. The metal phase showed the BCC structure ($a_0$=2.89 $\AA$) and Im3m space group. Also, the cobalt ferrite phase was identified as$ CoFe_2O_4$ with a cubic structure ($a_0=8.39 $\AA$$) and a space group of Fd3m. For the higher cobalt content than the stoichiometric composition,$ Co_{37.8}Fe_{62.2}$, the thin films with high Ms and Hc could be obtained in the wide substrate temperature range (200-40$0^{\circ}C$).

  • PDF

An analysis of tunable characteristic for magnetically tunable E-plane waveguide filters (Magnetically Tunable E-평면형 도파관 여파기 Tunable 특성 분석)

  • 이해선;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.87-97
    • /
    • 1998
  • This paper describes an analysis of tunable characteristic for magnetically tunable E-plane type finline filter on a ferrite substrate. The proposed design is based on using of quarter wavelength transmission line for compensating the negative length transmission line of end K-inverters of E-plane type waveguide filters and the tunable characteristics of designed filters are analyzed. The analysis results of filter and inverter structure loaded with finline on a ferrite substrate are obtained using the edge based finite element method including higher order mode effects. The X-band experimental results for bilateral and unilateral finline magnetically tunable E-plane type waveguide filters agree well with the simulated data.

  • PDF

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

Microprocessing of Ferrite Using Focused Laser Beam in $CCl_2F_2$ Gas Atmosphere ($CCl_2F_2$ 가스분위기에서 집속레이저빔을 이용한 페라이트의 미세가공)

  • Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2553-2555
    • /
    • 1998
  • A single crystal Mn-Zn ferrite was directly etched by focused $Ar^+$ laser beam in $CCl_2F_2$ gas atmosphere. AES has been performed for locally investigating the surface composition of an etched layer. MnCl, ZnCl being created after the substrate and $CCl_2F_2$ chemically reacting was remained in the vicinity of laser irradiation area because of their low vapor pressure. Various patterns using computer were formed on the substrate. The etched grooves and patterned shapes were observed by SEM measurement.

  • PDF

CoFe2O4 Films Grown on (100) MgO Substrates by a rf Magnetron Sputtering Method ((100) MgO 기판에 성장한 CoFe2O4 박막의 물리적 및 자기적 특성에 관한 연구)

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.140-143
    • /
    • 2006
  • Single crystalline $CoFe_2O_4$ thin films on (100) MgO substrates were fabricated using a rf magnetron sputtering method. The deposited films were investigated for their crystallization by X-ray diffraction, Rutherford back-scattering spectroscopy and field emission scanning electron microscopy. When a cobalt ferrite film was deposited at the substrate temperature of $600^{\circ}C$, squared grains of about 200 nm were uniformly distributed in the film. However, the grains became irregular and their sizes also varied from 30 to 150 nm when the substrate temperature was $700^{\circ}C$. Hysteresis loops of a film deposited at $600^{\circ}C$ showed that the magnetically easy axis of the film was perpendicular to the substrate surface. Except for the squareness ratio, magnetic properties of the cobalt ferrite films grown by the present rf sputtering method were as good as those of the films prepared by a laser ablation method: The in-plane and perpendicular coercivities were 283 and 6800 Oe, respectively. As the thickness of the deposited film increased twice, the saturation magnetization became double but the coercivity remained unchanged. However, deposition of the Co ferrite films with a higher rf powder decreased the squareness ratio and the perpendicular coercivity of the films.

The Properties and Manufacturing of $Fe{3-X}-Ni_XO_4$Films by Spin-Spray Ferrite Method (스핀스레이법 의한 $Fe{3-X}-Ni_XO_4$ 페라이트 박막의 제작과 그 특성)

  • 김명호;장경욱;부정기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.652-657
    • /
    • 1998
  • We have performed spin-spray ferrite plating of $Fe{_3}{-X}-Ni_XO_4$(X=0.17~0.26) films in the temperature region $T=80~95[^{\circ}C]$. A reaction solution and an oxidizing solution were supplied to a reaction chamber by supply pump. The solubility limit of Ni increases as the substrate temperature increase, from X=0.17 at $80[^{\circ}C]$ to X=0.26 at $95[^{\circ}C]$. All the films are polycrystalline with no preferential orientation, and the magnetization exhibits no definite anisotropy. Grain size in the films increases as X increases, reaching $0.87[\mu{m}]$ at X=0.26.

  • PDF

Preparation of C-plane oriented BaFe12O19 film by electrospray deposition of colloidal precursor particles (정전분무 장치를 이용한 C축 일방향 바륨페라이트(BaFe12O19) 박막형성)

  • Lee, Hye Moon;Kim, Yong Jin
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 2010
  • New process consisting of electrospray and epitaxial crystal growth processes was applied to the preparation of c-plane oriented barium ferrite ($BaFe_{12}O_{19}$) thin film for high density magnetic recording media. Sodium citrate aided process was proper to preparation of amorphous $BaFe_{12}O_{19}$ nanoparticles with geometric mean diameter of 3 nm and geometric standard deviation of 1.1. The electrospray was applicable to the prepare of amorphous $BaFe_{12}O_{19}$ thin film on a substrate, and the film thickness could be controlled by adjusting the electrospray deposition time. The c-plane oriented $BaFe_{12}O_{19}$ thin film was successfully prepared by 3 step annealing process of the $BaFe_{12}O_{19}$ amorphous film on a sapphire($Al_2O_3$) substrate; annealing at $350^{\circ}C$ for 30 min, annealing at $500^{\circ}C$ for 30 min, and annealing at $700^{\circ}C$ for 60 min.

Design and Properties of Microwave Absorbing Structures Composed of Fiber Reinforced Composites (섬유강화 복합재료로 구성된 전파흡수구조재의 설계 및 특성)

  • 김상영;김성수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.1002-1008
    • /
    • 2001
  • The absorbing structure composed of multi-layered fiber reinforced composite materials was designed and microwave absorbing properties are investigated. On the basis of transmission line theory, the theoretical equations to predict the reflection loss and the appropriate composite material for each functional layer are suggested. The most significant result of this study is the successful design and fabrication of triple-layered composite laminates which has the superior microwave absorbing porperties (more than 10 dB in 4∼12 GHz range), without using the ferrite filler in the impedance transforming layer. In the two-layered composite laminate (absorber/substrate), however, the use of ferrite filler (about 40 wt %) in the absorbing layer is necessary to obtain the certain level of microwave absorbance. By combining the glass-fiber composite with ferrite filler and carbon-fiber composite substrate, the microwave absorbing properties more than 10 dB in 4∼12 GHz frequencies than be obtained.

  • PDF

A Study of cut off effect of ultraviolet in sunglasses lens coated with nickel-ferrite thin film NxFe3-xO4 (니켈페라이트 박막 NxFe3-xO4를 이용한 선글라스 렌즈의 자외선 차단효과에 대한 연구)

  • Ha, T.W.;Lee, Y.H.;Choi, K.S.;Cha, J.W.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.25-29
    • /
    • 2003
  • Nickel-ferrite $Ni_xFe_{3-x}O_4$ thin films with several composition for Ni on glass substrate was prepared by ferrite plating method in order to make sunglass which cut off ultraviolet and shield electromagnetic field. It has single phase of polycrystalline spinel structure and has gloss as mirror and has high hardness which is no scratch while scraping by using nail. The transmittance of nickel-ferrite thin film is lowered to zero below 400 nm manifestly. And it shows that the nickel-ferrite thin film in nickel composition rate x = 0.09 was most cut oil ultraviolet when compared with goods of other company in the cut off effect of ultraviolet. Therefore, sunglasses coated with $Ni_xFe_{3-x}O_4$ thin film can be used in removing ultraviolet and electromagnetic field.

  • PDF