• Title/Summary/Keyword: ferric chloride

Search Result 162, Processing Time 0.022 seconds

Effect of various cleaners and mordants to bond strength of light curing glass ionomer cements to dentin (Smear layer 제거와 금속 이온 처리가 광중합형 글라스아이오노머와 상아질간의 결합강도에 미치는 영향)

  • Lee, Won-Seob;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.45-63
    • /
    • 1994
  • 128 freshly extracted human molars were used to study the interaction between dentinal smear layer removal with various agents, and the shear bond strength of a light cured glass ionomer cement to dentin. It was proposed that the removal of smear layers using acidic cleaners followed by incorporation of Fe mordant with dentin could enhanced the infiltration of monomer component in light curing glass ionomer cement and resulted in a high bond strength. For the first treatment process for removal of smear layers on the surfaces of dentin, 50 % citric acid, 10% maleic acid and 10 % phosphoric acid were used, and for the second treatment process, 15% ferric chloride, 6.8% ferric oxalate or 30% potassium oxalate were used. Distilled water was used as a control. After double sequential treatment on dentin, a light curing glass ionomer cement was bonded to dentin. After being immersed in water at 31'C for 24 hours, shear bond strengths were measured Instron testing machine(Model No.4202, USA). Surface changes were also observed using SEM (Hitachi, S-2300, Japan) after treatment process with each agents. The following conclusions were drawn : 1. Dentin surface cleaned with maleic acid and treated with ferric oxalate showed the highest bond strength with light curing glass ionomer cement. 2. Bond strengths of glass ionomer cement to dentin treated with maleic acid or citric acid were the highest, and that treated with phosphoric acid showed the lowest. 3. The effect of ferric oxalate on shear bond strength to dentin was always higher than that of ferric chloride. 4. The smear layers were clearly removed and the orifices of dentinal tubules were opened widely by the citric acid, maleic acid and phosphoric acid. 5. The orifices of dentinal tubules opened after using the first solution were closed with the treatment of ferric chloride. 6. The precipitate like crystals were formed on dentin surfaces and tubules, but a significant decrease in bond strength of glass ionomer cement to dentin surface treated with potassium oxalate.

  • PDF

A Study on the Photoetching of AISI 304 Stainless Steel (304 스텐레스박판의 포토에칭기술 연구)

  • Kim, Man;Chang, Do-Yon;Lee, Kyu-Hwan;Rho, Byung-Ho
    • 연구논문집
    • /
    • s.23
    • /
    • pp.29-43
    • /
    • 1993
  • Photoetching of AISI 304 stainless steel in ferric chloride solution has been studied. This paper investigated on the single side etching characteristics of 304 stainless steel, especially influence of etching temperature, spray pressure of ferric chloride etchant, and etching time with $50\mum$ and $75\mum$ line width photomask.

  • PDF

Treatment of Dye-Processing Wastewater by Chemical Precipitation (화학적 침전공정에 의한 염색가공폐수의 처리)

  • Han, Myung-Ho;Huh, Man-Woo;Kim, Jeong-Mog;Lee, Jin-Sik;Lim, Hak-Sang
    • Textile Coloration and Finishing
    • /
    • v.9 no.6
    • /
    • pp.26-32
    • /
    • 1997
  • In order to remove the pollutants effectively in the dye-processing wastewater by chemical precipitation, coagulation and flocculation test was carried out using several coagulants on various reaction conditions. It was found that the Ferric sulfate was best coagulant for the treatment of mixed dye-processing wastewater. When the Ferric sulfate dosage was 1,100mg/$\ell$, the COD removal rate was very high(50%), and the color was removed very effectively. The COD was decreased relatively well up to 40%, when Alum was dosed as coagulant. But it was difficult to remove the color effectively. Test results about COD removal for the Ferrous sulfate and the Ferric chloride used were mostly same as those of the Alum used. However, the color removal by the Ferrous sulfate was much better than the case of the Alum or the Ferric chloride. It was found that the COD removal was increased and the sludge yield was decreased by pH control before polymer flocculant addition, during the jar test for the Ferrous sulfate and the Ferric sulfate as a coagulant.

  • PDF

Study on the Effect of Iron-based Metal Catalysts on the Thermal Decomposition Behavior of ABS (Iron계 금속 촉매가 ABS의 열분해 거동에 미치는 영향에 관한 연구)

  • Jang, Junwon;Kim, Jin-Hwan;Bae, Jin-Young
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.496-501
    • /
    • 2005
  • The thermal degradation of ABS in the presence of iron-based metal catalysts has been studied by thermogravimetric analysis (TGA). The reaction of iron-based metal catalysts (ferric nitrate nonahydrate, ammonium ferric sulfate dodecahydrate, iron sulfate hydrate, ammonium ferric oxalate, iron(II) acetate, iron(II) acetylacetonate and ferric chloride) with ABS has been found to occur during the thermal degradation of ABS. In a nitrogen atmosphere, char formation was observed, and at $600^{\circ}C$ approximately 3~23 wt% of the reaction product was non-volatile char. The resulting enhancement of char formation in a nitrogen atmosphere has been primarily due to the catalytic crosslinking effect of iron-based metal catalysts. On the other hand, char formation of ABS in air at high temperature by iron-based metal catalyst was unsuccessful due to the oxidative degradation of the char.

Influencing Factors on NOM Removal using Blended Coagulants (혼합응집제에 의한 자연유기물질 제거에 미치는 영향 인자)

  • 명복태;우달식;최종헌;문철훈;이윤진;조영태;조관형;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.96-103
    • /
    • 2001
  • This study was carried out to investigate the major factors for the removal of NOMs (Natural Organic Matters) by alum ferric chloride and blended coagulants that consisted of alum and ferric chloride. Investigated factors were pH, the dosage of coagulant, alkalinity, hardness and bloc strength. The particle size contained in the test water came from the Han River was also measured. DOC(Dissolved Organic Carbon) removal at pH 6 was two to three times higher than at pH 8.5. The blended coagulant showed 9 to 10 percent higher DOC removal efficiency and 2 to 4 percent higher turbidity under the same condition. Alkalinity consumption of alum, ferric chloride and blended coagulant was 81%, 90% and 86% of theoretical value, respectively. The limit concentration of alkalinity to avoid pin floe was 10 mg $CaCO_3/L$ when alum was used. Hardness had no apparent effect on coagulation. The residual turbidity and $UV_{254}$ showed a tendency of increasing with floc strength($sec^{-1}$) increase. The order of floe strength was the following; alum >blended coagulant > ferric chloride. The particle counter test showed 89 percent of the small particle size(SPS, $1~5{\;}{\mu}textrm{m}$) and 11 percent of the medium to large particle size(M.LPS, $5~125{\;}{\mu}textrm{m}$). At PH7.85, the particle removal efficiencies of SPS($1~5{\;}{\mu}textrm{m}$) and M.LPS($5~125{\;}{\mu}textrm{m}$) in the coagulation process were 81% and 95%, respectively.

  • PDF

Ameliorative Effect of the Water Extract from Cirsium japonicum var. ussuriense Leaves on Blood Circulation in a Rat Model of Topical Ferric Chloride-Induced Carotid Artery Damage (Ferric Chloride로 유도된 렛트 경동맥 손상 및 혈전에 대한 수용성 엉겅퀴 잎 추출물의 혈행 개선 효과)

  • Kang, Hyun Ju;Kim, Hyeon Soo;Jeon, In Hwa;Mok, Ji Ye;Jeong, Seung-Il;Shim, Jae Suk;Jang, Seon Il
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • The present study has been undertaken to investigate the effect of the extract of Cirsium japonicum var. ussuriense leaves (CLE) on blood circulation in a rat model of topical ferric chloride ($FeCl_3$)-induced carotid artery damage. $FeCl_3$ treatment seriously damaged the carotid artery such as the walls of the artery, blood flow and inflammation. However, CLE administration has ameliorated blood circulation and suppressed vessel inflammation. CLE administration also has ameliorated the $FeCl_3$-induced artery tissue damage. Furthermore, CLE significantly suppressed the expression of adhesion molecules. These results suggest that CLE ameliorate blood circulation through suppress inflammatory mediator and adhesion molecule production.

Study on components of Geranium sibiricum L. (Geranium sibiricum L.의 성분에 대하여)

  • 유경수
    • YAKHAK HOEJI
    • /
    • v.3 no.1
    • /
    • pp.23-25
    • /
    • 1957
  • The herb of Geranium sibirium L, a drug knwon as "Chui Sonni Poul" distributed widely, has been used as a folk-medicine for the treatment of diarrhea. The dried entire herb is boiled with methanol and methanol is distilled of from the filtered methanol extract under reduced pressure. Then the extract is boiled with water and filtered off. From the filtrate, the following substances are isolated and identified by treating with organic solvents as ether, ethyl acetate, and etc.: 1. Gallic acid: a colorless needle crystal which is soluble in alcohol and water. mp.235.deg. C, positive (dark blue) against the ferric chloride reagent. 0.76 percent of gallic acid is yielded from the herb. 2. Quercetin: a light yellow crystal. mp.194.deg. C. negative against the ferric chloride reagent. 3. Ellagic acid: a light yellow crystal which is insoluble in ehter and acetone and slightly soluble in alcohol. Positive (blue) against the ferric chloride reagent. The crystal obtained by recrystalisation from pyridine, does not melt by 360.deg. C. Represent a yield of 0.03 percent from the herb. 4. Crude tannin: a approximately 7.6 percent of crude tannin is yielded by treating with ethyl acetate. gallic acid and querceetin are yielded by hydrosis with dliute sulfuric acid. Based on the above results, the following suggestion could be recommendable; Geraed in the Japanese Pharmacoeia VI.acoeia VI.

  • PDF

Enhance degradation of insecticide chlorpyrifos by iron salts and potassium persulfate during zerovalent iron treatment in aqueous solution

  • Rahman, M. Mokhlesur;Hwang, Jung-In;Kwak, Se-Yeon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Degradation of the insecticide O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) in aqueous solution was investigated using iron salts and potassium persulfate during ZVI treatment through a series of batch experiments. The degradation rate of chlorpyrifos increased with increases in the concentrations of iron salts and potassium persulfate in the aqueous system. Ferric chloride was found to be the most effective iron salt for the ZVI-mediated degradation of chlorpyrifos in aqueous solution. Further, the iron salts tested could be arranged in the following order in terms of their effectiveness: $FeCl_3$> $Fe_2(SO_4)_3$> $Fe(NO_3)_3$. The persulfate-ZVI system could significantly degrade chlorpyrifos present in the aqueous medium. This revealed that chlorpyrifos degradation by treatment with $Fe^0$ was promoted on adding ferric chloride and potassium persulfate. The kinetics of the degradation of chlorpyrifos by persulfate-amended $Fe^0$ was higher than that for iron-salt-amended $Fe^0$. This suggests that using a sequential $Fe^0$ reduction-ferric chloride or $Fe^0$ reduction-persulfate process may be an effective strategy to enhance the removal of chlorpyrifos in contaminated water.

Study on the Thermal Decomposition Behavior of[ABS/PC/Triphenyl Phosphate/Transition Metal Chloride] Compounds ([ABS/PC/Triphenyl Phosphate/Transition Metal Chloride] 컴파운드의 열분해 거동 연구)

  • Jang Junwon;Kim Jin-Hwan;Bae Jin-Young
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.338-343
    • /
    • 2005
  • The thermal degradation of ABS/PC/triphenyl phosphate compounds in the presence of transition metal chloride catalysts has been studied by thermogravimetric analysis (TGA). The reaction of transition metal chloride catalysts (cobalt chloride, ferric chloride, nickel chloride and zinc chloride) and ABS/PC/triphenyl phosphate compounds has been found to occur during the thermal degradation of the compounds. In a nitrogen atmosphere, char formation is observed, and $3\~13\%$of the reaction product is non-volatile at $600^{circ}$. The resulting enhancement of char formation in a nitrogen atmosphere has been explained as a catalytic crosslinking effect of transition metal chloride catalysts. On the other hand, transition metal chloride catalyzed char formation of ABS/PC/triphenyl phosphate compounds in air was unsuccessful due to the oxidative degradation of the char at a higher temperature.

Difference in Bonding Strength of RMGIC according to Type of Hemostatic Agent in Primary Tooth (지혈제의 종류에 따른 레진 강화형 글라스아이오노머 시멘트 결합력의 차이)

  • Back, Seolah;Lee, Joonhaeng;Kim, Jongbin;Han, Miran;Kim, Jong Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.4
    • /
    • pp.460-466
    • /
    • 2021
  • The purpose of this study was to compare the effect of the hemostatic agent containing aluminum chloride with hemostatic agent containing ferric sulfate on the shear bond strength of resin-modified glass ionomer cement(RMGIC) to dentin in primary tooth. Twenty extracted non-carious human primary teeth were collected in this study. The specimens were cut to expose dentin and polished. The specimens were randomly seperated into 3 groups for treatment; group I: polyacrylic acid(PAA), RMGIC; group II: aluminum chloride, PAA, RMGIC; group III: ferric sulfate, PAA, RMGIC Ten specimens from each group were subjected to shear bond strength test. The mean shear bond strength of each group was as follows: 10.07 ± 1.83 MPa in Group I, 7.62 ± 0.78 MPA in group II, 5.23 ± 0.78 MPa in group III. There were significant differences among all groups(p < 0.001). In conclusion, both aluminum chloride hemostatic agent and ferric sulfate hemostatic agent decreased the shear bond strength of RMGIC to dentin. And ferric sulfate hemostatic agent decreased the shear bond strength of RMGIC more than the aluminium chloride hemostatic agent.