• Title/Summary/Keyword: fermionic p-adic q-integral

Search Result 6, Processing Time 0.018 seconds

A NOTE ON THE q-ANALOGUES OF EULER NUMBERS AND POLYNOMIALS

  • Choi, Jong-Sung;Kim, Tae-Kyun;Kim, Young-Hee
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.529-534
    • /
    • 2011
  • In this paper, we consider the q-analogues of Euler numbers and polynomials using the fermionic p-adic invariant integral on $\mathbb{Z}_p$. From these numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

A NOTE ON THE q-EULER NUMBERS AND POLYNOMIALS WITH WEIGHT (α,ω)

  • Rim, Seog-Hoon;Jeong, Joo-Hee
    • Honam Mathematical Journal
    • /
    • v.34 no.2
    • /
    • pp.183-190
    • /
    • 2012
  • The main purpose of this paper is to introduce a new type of $q$-Euler numbers and polynomials with weak weight (${\alpha}$,${\omega}$): $\tilde{E}^{({\alpha},{\omega})}_{n,q}$ and $\tilde{E}^{({\alpha},{\omega})}_{n,q}(x)$, respectively. By using the fermionic $p$-adic $q$-integral on $\mathbb{Z}_p$, we can obtain some results and derive some recurrence identities for the $q$-Euler numbers and polynomials with weak weight (${\alpha}$,${\omega}$).

SYMMETRIC IDENTITIES OF THE DEGENERATE MODIFIED q-EULER POLYNOMIALS UNDER THE SYMMETRIC GROUP

  • Kwon, Jongkyum;Pyo, Sung-Soo
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.671-679
    • /
    • 2018
  • Abstract of the article can be written hereAbstract of the article can be written here. Recently, several authors have studied the symmetric identities for special functions(see [3,5-11,14,17,18,20-22]). In this paper, we study the symmetric identities of the degenerate modified q-Euler polynomials under the symmetric group.

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1181-1188
    • /
    • 2010
  • q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.