• Title/Summary/Keyword: fermented sausages

Search Result 59, Processing Time 0.025 seconds

Effect of acid whey and freeze-dried cranberries on lipid oxidation and fatty acid composition of nitrite-/nitrate-free fermented sausage made from deer meat

  • Karwowska, Malgorzata;Dolatowski, Zbigniew J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.85-93
    • /
    • 2017
  • Objective: This study evaluated the effect of acid whey and freeze-dried cranberries on the physicochemical characteristics, lipid oxidation and fatty acid composition of nitrite-free fermented sausage made from deer meat and pork fat. Antioxidant interactions between acid whey and cranberry compounds were also explored. Methods: Four formulations of fermented venison sausage were prepared: F1 (control), F2 (with 5% liquid acid whey), F3 (with 0.06% of freeze-dried cranberries), and F4 (with 5% liquid acid whey and 0.06% of freeze-dried cranberries). Each sample was analyzed for pH, water activity ($a_w$), heme iron content, 2-thiobarbituric acid reactive substances (TBARS) value and conjugated dienes at the end of the manufacturing process and at 30 and 90 days of refrigerated storage. Fatty acid composition was measured once at the end of the manufacturing process. Results: At the end of ripening, all samples presented statistically different values for a pH range of 4.47 to pH 4.59. The sum of the unsaturated fatty acids was higher, while the conjugated diene and the TBARS values were lower in sausages with freeze-dried cranberries as compared to the control sausage. The highest content of heme iron (21.52 mg/kg) at day 90 was found in the sausage formulation with the addition of freeze-dried cranberries, which suggests that the addition of cranberries stabilized the porphyrin ring of the heme molecule during storage and thereby reduced the release of iron. The use of liquid acid whey in combination with cranberries appears to not be justified in view of the oxidative stability of the obtained products. Conclusion: The results suggest that the application of freeze-dried cranberries can lower the intensity of oxidative changes during the storage of nitrite-free fermented sausage made

Partial replacement of pork backfat with konjac gel in Northeastern Thai fermented sausage (Sai Krok E-san) to produce the healthier product

  • Sorapukdee, Supaluk;Jansa, Sujitta;Tangwatcharin, Pussadee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1763-1775
    • /
    • 2019
  • Objective: The influence of konjac gel level on fermentation process and product qualities were assessed to evaluate the feasibility of using it as fat analog in Northeastern Thai fermented sausage (Sai Krok E-san). Methods: Five treatments of fermented sausages were formulated by replacing pork backfat with 0%, 7.5%, 22.5%, and 30% konjac gel. The changes in lactic acid bacteria (LAB) and important physicochemical properties of samples were assessed during 3 days of fermentation. After the end of fermentation at day 3, water activity ($a_w$), instrumental texture, color, microbial counts, and sensory evaluation were compared. The best product formulation using konjac for replacing pork back fat were selected and used to compare proximate composition and energy value with control sample (30% pork backfat). Results: An increase in konjac gel resulted in higher values of LAB, total acidity, and proteolysis index with lower pH and lipid oxidation during 3 days of product fermentation (p<0.05). It was noted that larger weight loss and product shrinkage during fermentation was observed with higher levels of konjac gel (p<0.05). The resulting sausage at day 3 with 15% to 30% konjac gel exhibited higher hardness, cohesiveness, gumminess, springiness, and chewiness than control (p<0.05). The external color of samples with 22.5% to 30% konjac gel were redder than others (p<0.05). Mold, Salmonella spp., Staphylococcus aureus, and Escherichia coli in all finished products were lower than detectable levels. Product with 15% konjac gel had the highest scores of sourness linking and overall acceptability (p<0.05). Conclusion: The product with 15% of konjac gel was the optimum formulation for replacing pork backfat. It had higher sensorial scores of sourness and overall acceptability than control with less negative impact on external appearance (product shrinkage) and weight loss. Moreover, it provided 46% fat reduction and 32% energy reduction than control.

Antioxidant and Antifungal Activities of Essential Oils against Contaminating Fungi Isolated from Fermented Sausages (발효소시지 유래 오염 곰팡이에 대한 에센셜 오일의 항곰팡이능과 항산화능 분석)

  • Lee, Eun-Seon;Kim, Jong-Hui;Kim, Bu-Min;Oh, Mi-Hwa
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.5
    • /
    • pp.446-453
    • /
    • 2022
  • In this study, we analyzed the antifungal activities of five essential oils (clove, rosemary, thyme, basil, and oregano) against three fungi (Penicillium oxalicum, Penicillium commune, and Cladosporium cladosporioides) isolated from farm-type fermented meat products Though their antifungal activities differed for each fungus, thyme had the greatest effect. Notably, C. cladosporioides showed the highest sensitivity to essential oils, and growth inhibitory effects were greater than for the other two strains. Additionally, ABTS, DPPH, and FRAP analysis confirmed that the five essential oils studied had antioxidant activity. ABTS analysis showed that clove (75%) and oregano (75%) oils had the highest antioxidant activities (both 93.7%). DPPH analysis showed that clove (75%) and rosemary (75%) oils had significantly greater antioxidant activities (both 93.8%) than thyme, basil, or oregano oils. FRAP results indicated that clove and basil oils were the strongest reductants. Comprehensive comparative analysis indicated that clove oil had more antioxidant activity than the other four essential oils. Overall, the study shows that the excellent antifungal properties of clove oil could be harnessed to produce safe fermented meat products by preventing rancidity and mold contamination.

Effect of Modified Atmosphere Packaging Varying in CO2 and N2 Composition on Quality Characteristics of Dry Fermented Sausage during Refrigeration Storage

  • Ameer, Ammara;Seleshe, Semeneh;Kang, Suk Nam
    • Food Science of Animal Resources
    • /
    • v.42 no.4
    • /
    • pp.639-654
    • /
    • 2022
  • The current study investigated the effects of the most suitable modified atmosphere packaging (MAP) on the physicochemical, microbiological, and sensory properties of fermented dry sausages during 45 days of refrigeration (4℃) storage period. Treatments were vacuum-packed (control), 25% CO2/75% N2 (MAP1), 50% CO2/50% N2 (MAP2), 70% CO2/30% N2 (MAP3), and 100% CO2 (MAP4). All MAP samples regardless of their CO2 composition significantly (p<0.05) decreased in pH, aw, total plate count, and lactic acid bacteria count values as compared to the vacuum-package during storage. The Enterobacteriaceae count in all MAP packaging was significantly (p<0.05) lower than the vacuum-packed samples and counts in MAP3 and MAP4 samples were markedly (p<0.05) lower than all other treatments in prolonged storage of 15 and 45 days. Based on the thiobarbituric acid reactive substance content at day 15 and 30 storage time, treatments are ranked as follows: Vacuum-packed>MAP1>MAP2>MAP3>MAP4. The a* of MAP4 was higher than all other treatments. In the final storage days, no variation was exhibited (p>0.05) among treatments in lactic acid aroma and sourness, and MAP2 samples had the lowest (p<0.05) overall acceptability. The use of MAPs with an increase in the CO2 from MAP1 to MAP4 samples can help in better microbial inhibition than vacuum package, and 70% CO2/30% N2 (MAP3) and 100% CO2 (MAP4) were effective to maintain several quality parameters (aw, pH, microbial inhibition, stability against lipid oxidation, and instrumental color traits) and extend the shelf life of dry fermented sausage.

Studies on the development of sausage fermented by Leuconostoc citreum (Leuconostoc citreum을 이용하여 발효시킨 Sausage 개발)

  • Chang Sang-Keun;Kim Hye-Jung
    • Korean journal of food and cookery science
    • /
    • v.21 no.1 s.85
    • /
    • pp.33-39
    • /
    • 2005
  • The present study was carried out to develop sausage using Leuconostoc citreum which was isolated from Kimchi. Leuconostoc citreum was added to sausage at three concentrations of 1, 3 and $5\%$, and was stored at $10^{\circ}C$ for 40 days. The pH of the sausage containing Leuconostoc citreum was similar to the control group. The TBA value of the group containing Leuconostoc citreum was lower than the control group. However, the TBA value of the control group steadily increased after 10 days of storage, and there were only minor changes in the groups containing Leuconsostoc citreum. In addition, the TBA value of the sausages employed for the present study was either 0.46MA mg/kg or less than that over the entire period of storage. The residual nitrite value was 47.1 ppm at the beginning of the storage in the control group and was 32.5, 32.2 and 30.9 ppm in the groups containing Leuconostoc citreum. The sausages with TBA values higher than 70 ppm are not permitted in Korea. With regards totexture characteristics, it was observed the hardness was lower in the groups containing Leuconostoc ctireum than in the control group while springiness was almost the same in both the groups, but the group containing $1\%$ Leuconostoc citreum showed the best springiness. Both gumminess and brittleness were lower in the groups containing Leuconostoc citreumthan than in the control group. It was inferred that with an increase in the concentration of Leuconostoc citreum there was a decrease in the value of gumminess and brittleness. The results of the sensory evaluation were generally better in the groups containing Leuconostoc citreum than the control group. The sausage containing $3\%$ Leuconostoc citreum obtained the most excellent scores.

Microencapsulation of Lactic Acid Bacteria (LAB)

  • Feucht, Andreas;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.229-238
    • /
    • 2013
  • Lactic acid bacteria (LAB) are added to different food products for a long time due to health beneficial effects on human host. LAB is applied in dairy products, such as yoghurt, cheese, and various fermented products, and also in non-dairy products, such as sausages. However, reaching the human gut alive as well as in a sufficient cell amount to exert positive health effects is still a big challenge, due to LAB sensitive character and vulnerability against harsh and detrimental conditions in human digestive system. Keeping physiological activity of sensitive LAB strains alive is for the formulation of novel food products with a probiotic health claim of utmost interest, thus microencapsulation has been applied and investigated as a promising technique for a good and reliable protection. Microencapsulation allows reduced cell injury or cell loss by retaining cells within the encapsulating membrane and can be enforced by spray-drying, emulsion, extrusion, and a range of other technologies in combination with an appropriate coating material, such as alginate, chitosan, and mixture of these two polymers. In this review, established and well-studied microencapsulation techniques with their favored coating materials, as well as the recent applications of microencapsulated LAB into dairy products will be discussed.

The Effect of Glucono delta Lactone, Starter Clulture and NaCl on the Production of Staphylococcal Enterotoxign A in the Processing of Fermented Sausage (발효 소세지의 숙성 중 Starter Culture, Glucono delta Lactone 및 소금첨가량이 Staphylococcal Enterotoxin의 생성에 미치는 영향)

  • Shin, Heuyn-Kil;Jin, Young-Ku;Lee, Young-Jin;Park, Woo-Moon;Kim, Jong-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.150-156
    • /
    • 1991
  • This research was conducted to investigate the effect of starter culture(Lactobacillus plantarum), glucono-delta-lactone(GdL), and NaCl on the production of staphylococcal enterotoxin A in the processing of fermented sausages. With the increasing amount of GdL(0, 0.23, 0.50 and 0.75%) added the production of enterotoxin was significantly decreased(p>0.01). Lactobacillus plantarum as starter culture were inoculated at the level of $10^6\;cells/g$. When GdL was not added, the amount of production of enterotoxin in the group with and without the starter culture were 40 and 80 ng/10g, respectively. With the addition of 0.5%, GdL, the maximum amount of enterotoxin produced in the group with and without starter culture were 30 and 50 ng/10g. These results showed the inhibiting effect of starter culture in the production of enterotoxin. When the amount of enterotoxin production was compared with the addition of 2.7 and 1.7% NaCl, the production of enterotoxin was higher at 2.7% NaCl level.

  • PDF

Isolation and Identification of Bacteriocin-Producing Lactic Acid Bacteria (유용 박테리오신을 생산하는 유산균의 분리와 동정)

  • Hong, Sung Wook;Bae, Hyo Ju;Chang, Jin Hee;Kim, So-Young;Choi, Eun-Young;Park, Beom Young;Chung, Kun Sub;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2013
  • Lactic acid bacteria are microorganisms that are closely associated with human and/or animal environments, and are categorized as generally recognized as safe (GRAS) organisms due to their ubiquitous appearance in foods and their contribution to the healthy microflora of mucosal surfaces. This study was performed to isolate and identify lactic acid bacteria with antagonistic effects against food-borne pathogens. A total of 3,000 acid-producing bacteria were isolated from infant feces, cattle feces, goat feces, dog feces, pig feces, vaginal tracts, vegetables, fruits, Kimchi, Jeotgal, fermented sausages, raw milk, cheese, yogurt, Cheonggukjang, Meju, and Makgeolli cultured on MRS agar with 0.05% bromocresol purple. For the isolation of bacteriocin-producing bacteria, the diameter of the clear zone was measured on MRS agar plates. Twenty-six isolates exhibited strong antibacterial activity against indicator strains such as Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica serovar Enteritidis. Lactic acid bacteria were identified as Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Lactobacillus acidophilus, Lactobacillus amylovorus, Lactobacillus curvatus, Lactobacillus plantarum, and Pediococcus acidilactici by 16S rDNA gene sequence analysis. The results of this study suggest that the isolates could be used as potential probiotic starters for functional food applications.

  • PDF

The Naturally Occurring Levels of Nitrate and Nitrite in Livestock Products (축산물 중 천연유래 질산염 및 아질산염 함유량 조사)

  • Choi, Jae-Chun;Park, So-Ra;Lim, Ho-Soo;Ko, Kyung-Yuk;Kim, Meehye
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • This study was done in order to investigate the naturally occurring levels of nitrate and nitrite in livestock products. Total samples of 458 consisting of meats (n = 223), processed meat products (n = 51), raw milks (n = 30), processed milk products (n = 142), eggs (n = 5) and processed egg products (n = 7) were analyzed for contents of nitrate and nitrite by ion chromatography (IC). That methods showed good results in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ), recovery, reproducibility and uncertainty. Nitrate and nitrite were detected in 167 and 40 samples, respectively. The nitrate levels (mg/kg) were not detected (ND)~40.23 for modified milks, ND~37.97 for sauce meats, ND~32.40 for process cheeses, ND~31.50 for processed egg products, ND~27.73 for dry milks, ND~24.76 for sausages, ND~22.45 for bacons, ND~21.55 for natural cheeses, ND~20.82 for hams and fermented milks, ND~13.57 for eggs, ND~12.77 for butters, ND~9.31 for milks and ND~3.88 for meats while the nitrite levels (mg/kg) were ND~17.35 for processed egg products and ND~1.92 for meats. In conclusion, the result of this study of nitrate and nitrite in livestock products could be used as one of scientific base datum to determine whether they are naturally occurring or not, including ingredients and their percentage, manufacturing processes, other papers relating to naturally occurring levels of them, and so on.