• Title/Summary/Keyword: fermented pollen extract

Search Result 3, Processing Time 0.017 seconds

The improvement effect of anti-inflammation of Aronia extract that fermented by Lactic acid bacteria isolated from the fermented seafoods

  • Lim, Jeong-Muk;Choi, Ui-Lim;Lee, Jeong-Ho;Moon, Kwang Hyun;Kim, Dae Geun;Jeong, Kyung Ok;Im, So Yeon;Oh, Byung-Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.111-111
    • /
    • 2018
  • Aronia (black chokeberry), a species of berries is source to a very large number of bioactive compounds like polyphenols, flavonoids, anthocyanins, and tannins in comparison to any other species. Owing to its antioxidant, anti-carcinogenic, anti-aging and anti-inflammatory properties. Fermentation- a bioconversion process exploiting the biological metabolic reaction of micro-organisms, has several benefits like improving the efficacy and safety of physiologically active substances, generation of new functional material, improving the adsorption rate and many others. Antigens like pathogens, food, pollen etc., generate a protective immune response in body tissues, and the process be referred to as inflammation. However, this when excessive results in a condition referred to as refractory inflammatory disease, whose incidence is increasing in the recent times, especially amongst children. The current study intended to assess the anti-oxidant activity, presence of polyphenols and anti-inflammatory efficacy of Aronia extract fermented by Lactic acid bacteria isolated from fermented sea foods. Aronia fruits collected from Sunchang, Chonbuk were lyophilized for fermentation. So as to maximise the efficacy of the fermented Aronia extract, the quantitative effects of lactic acid bacteria species, composition of extraction solution, influence of temperature and time on antioxidant activity and total polyphenol contents were investigated using an experimental design. Anti-inflammatory activity was evaluated on NO and cytokine ($TNF-{\alpha}$, IL-6) production in LPS activated Raw 264.7 cells. Results indicated that antioxidant effect and total polyphenol contents were best improved in extract of Aronia fermented by P. pentosaceus. In addition, NO and cytokine ($TNF-{\alpha}$, IL-6) levels were decreased significantly after fermentation. Thus, it was found that the anti-inflammatory activity of Aronia greatly increased after fermentation process using P. pentosaceus.

  • PDF

Antimicrobial Activity of a Gelidium corneum - Gelatin Blend Film Containing Fermented Pollen Extract and Its Application in the Packaging of Pork Loins (화분발효물을 함유한 Gelidium corneum - 젤라틴 혼합필름의 항균활성과 돈육의 포장재 적용)

  • Hong, Yun-Hee;Lim, Geum-Ok;Song, Kyung-Bin
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.391-395
    • /
    • 2009
  • Gelidium corneum - gelatin (GCG) blend films containing fermented pollen extract (FPE) were prepared and used as a packaging material of pork loins. Water vapor permeability (WVP) of the film containing FPE was better than the control film, and the film's antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes increased with increasing FPE concentration. Addition of 0.15% FPE decreased the populations of Escherichia coli O157:H7 and Listeria monocytogenes by 2.98 and 3.68 Log CFU/g, respectively, compared to the control. Pork loin samples were inoculated with E. coli O157:H7 and L. monocytogenes and packed with the film. The samples packed with the GCG film containing 0.15% FPE had a decrease in the populations of E. coli O157:H7 and L. monocytogenes by 1.49 and 1.01 Log CFU/g after 4 d of storage, respectively, compared to the control. The results suggested that shelf life of the pork loins could be extended by packaging with the GCG film containing 0.15% FPE.

Effect of Commercial Antimicrobials in Combination with Heat Treatment on Inactivation of Bacillus cereus Spore

  • Shin, Hye-Won;Lim, Yoon-Hee;Lee, Jong-Kyung;Kim, Yun-Ji;Oh, Se-Wook;Shin, Chul-Soo
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.603-607
    • /
    • 2008
  • Thirteen commercial antimicrobial products were examined to assess the sporicidal activity against Bacillus cereus spores at room temperature, 60 and $85^{\circ}C$. Neither the antimicrobials showed detectable antimicrobial activity against the B. cereus spores nor induced spore germination after the treatment at 0.5 or 1.0%(w/v, v/v) commercial antimicrobial agents at room temperature for 0.5 to 4 hr. However, when the antimicrobials such as chitosan, lactic acid, fermented pollen, grapefruit extract were applied with heat at $85^{\circ}C$ for 30 min, more than 1 log CFU/mL spores were additionally inactivated compared to only heat treatment without antimicrobials. Imposition of $60^{\circ}C$ to B. cereus spores with the higher concentration of 5.0%(v/v) lactic acid or 2.5%(w/v) thiamine dilaurylsulfate for the longer time incubation of 24 hr resulted in 3 log CFU/mL spore inactivation. This work showed that low concentrations of commercial antimicrobials by themselves did not inactivate B. cereus spores. However, when physical processes such as heat were combined together, antimicrobials showed a synergistic effect against B. cereus spores.