• 제목/요약/키워드: fermented oyster (FO)

검색결과 3건 처리시간 0.018초

발효굴 섭취가 중년 여성의 신체조성, 근력 및 혈중 근성장 인자에 미치는 영향 (Effects of Fermented Oyster Extract Supplementation on Body Composition, Muscular Strengths and Blood Muscle Growth Fact ors in Elderly Women)

  • 박정현;김동석;이배진;허정수;전병환
    • 한국해양바이오학회지
    • /
    • 제13권2호
    • /
    • pp.76-85
    • /
    • 2021
  • Crassostrea gigas were fermented using L. brevis BJ20 to prepare fermented oyster extract (FO). The participants of this study were randomly assigned to FO and placebo (CON) groups. The FO group was given 1.0 g of FO supplementation and the CON group was given sucrose each day for eight weeks. The effects of FO supplementation on body composition, muscula r strength, and blood factors associated with muscle growth were assessed. The FO supplement was enriched with arginine (6,183.3 mg), phenylalanine (217.9 mg), leucine (122.6 mg), isoleucine (59.8 mg), valine (16.4 mg), and γ-amino butyric acid (GABA, 1,053.7 mg). The total fat was significantly decreased in the FO group compared with the CON group (p < 0.05). 60D/S Ext.T/Wo rk and 60D/S Flex.T/Work concomitantly with 60D/S Flex.PeakTQ/BW were significantly increase d by FO treatment compared to CON group (p < 0.05). However, posture stability was not significa ntly different between the groups. The levels of angiotensin-converting enzyme were significantly decreased within the FO group (p < 0.05). The FO group showed significantly decreased levels of tumor necrosis factor-α and increased levels of human growth hormone compared with the CON group (p < 0.01). The levels of insulin-like growth factor-1 increased (p < 0.01) in the FO group while that of creatine kinase and triglyceride decreased significantly compared with the CON group (p < 0.05). These results demonstrated that FO supplementation is effective in preventing sarcopenic obesity and maintaining and strengthening muscular function in elderly wom en. Hence, FO supplements can be used as functional ingredients for these benefits.

Safety effect of fermented oyster extract on the endocrine disruptor assay in vitro and in vivo

  • Lee, Hyesook;Hwangbo, Hyun;Ji, Seon Yeong;Oh, Seyeon;Byun, Kyung-A;Park, Joung-Hyun;Lee, Bae-Jin;Kim, Gi-Young;Choi, Yung Hyun
    • Fisheries and Aquatic Sciences
    • /
    • 제24권10호
    • /
    • pp.330-339
    • /
    • 2021
  • Oyster (Crassostrea gigas) is a marine bivalve mollusk widely distributed in coastal areas, and have been long widely used in industrial resources. Several studies demonstrated that fermented oyster (FO) extract attribute to bone health, but whether administration of FO play as an endocrine disruptor has not been studied. Therefore, in the present study, we investigated the effect of FO on the endocrine system in vitro and in vivo. As the results of the competitive estrogen receptor (ER) and androgen receptor (AR) binding affinities, FO was not combined with ER-α, ER-β, and AR. However, 17β-estradiol and testosterone, used as positive control, were interacted with ER and AR, respectively. Meanwhile, oral administration of 100 mg/kg and 200 mg/kg of FO doesn't have any harmful effect on the body weight, androgen-dependent sex accessory organs, estrogen-dependent-sex accessory organs, kidney, and liver in immature rats. In addition, FO supplementation has no effect on the serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone, and 17β-estradiol. However, the relative weight of androgen- and estrogen-dependent organs were significantly increased by subcutaneously injection of 4.0 mg/kg of testosterone propionate (TP) and by orally administration of 1.0 ㎍ of 17α-ethynyl estradiol (EE) in immature male and female rats, respectively. Furthermore, TP and EE administration markedly decreased the serum LH and FSH levels, which are similar those of mature Sprague-Dawley (SD) rat. Furthermore, the testosterone and 17β-estradiol levels were significantly enhanced in TP and EE-treated immature rats. Taken together, our findings showed that FO does not interact with ER and AR, suggesting consequentially FO does not play as a ligand for ER and AR. Furthermore, oral administration of FO did not act as an endocrine disruptor including androgenic activity, estrogenic activity, and abnormal levels of sex hormone, indicating FO may ensure the safety on endocrine system to develop dietary supplement for bone health.

Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

  • Joung, Hye-Young;Kang, Young Mi;Lee, Bae-Jin;Chung, Sun Yong;Kim, Kyung-Soo;Shim, Insop
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.479-485
    • /
    • 2015
  • This study was performed to investigate the sedative-hypnotic activity of ${\gamma}$-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the $GABA_A$-benzodiazepine and 5-$HT_{2C}$ receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In $GABA_A$ and 5-$HT_{2C}$ receptor binding assays, FST displayed an effective concentration-dependent binding affinity to $GABA_A$ receptor, similar to the binding affinity to 5-$HT_{2C}$ receptor. FO exhibited higher affinity to 5-$HT_{2C}$ receptor, compared with the $GABA_A$ receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedativehypnotic activity possibly by modulating $GABA_A$ and 5-$HT_{2C}$ receptors. We propose that FST and FO might be effective agents for treatment of insomnia.