• Title/Summary/Keyword: fermentation temperature

Search Result 1,144, Processing Time 0.03 seconds

Effect of Fermentation Temperature on Quality Characteristics of Apple Wine (발효온도가 사과와인 품질 특성에 미치는 영향)

  • Kwak, Han Sub;Seo, Jae Soon;Bae, Haejung;Lee, Hwajong;Lee, Youngseung;Jeong, Yoonhwa;Kim, Misook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.155-159
    • /
    • 2016
  • The objective of this study was to investigate the effect of fermentation temperature on quality characteristics of apple wine. Apple wine mashes were fermented in 15, 20, and $25^{\circ}C$ water bathes for 9 days. The pH levels of all samples were below 4 from 24 h of fermentation until the end. Total acidities of 0.05% acetic acid solution were 7.8, 7.4, and 7.0% in the 15, 20, and $25^{\circ}C$ fermented samples, respectively. The evaporation of esters generated by combining alcohol and organic acids might be the reason for lower total acidity for high temperature fermentation. Alcohol contents of the 20 and $25^{\circ}C$ fermented samples were 6.5 and 6.6% (v/v), respectively, whereas that of the $15^{\circ}C$ fermented sample was 5.6% (v/v) and significantly lower than the others (P<0.05). Methanol contents were 0.68, 0.82, and 1.69 mg/L in the 15, 20, and $25^{\circ}C$ fermented samples, respectively. Fermentation at higher temperatures generated higher methanol content in apple wine. On the other hand, acetaldehyde contents were 3.43, 2.39, and 1.02 mg/L in the 15, 20, and $25^{\circ}C$ fermented samples, respectively, due to the lower boiling point of acetaldehyde ($20.2^{\circ}C$). Based on the results, a fermentation temperature of $20{\sim}25^{\circ}C$ is effective for apple wine fermentation.

Effect of Fermentation Temperature and Salt Concentration on Changes in Quality Index of Salted Shrimp During Fermentation (새우젓갈의 숙성온도 및 식염농도가 위생품질인자의 변화에 미치는 영향)

  • Song, Ho Su;Kim, Sung Hun
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.355-362
    • /
    • 2017
  • Fermentation temperature (10 and $20^{\circ}C$) and salt concentration (10, 20, and 30%) on volatile basic nitrogen (VBN), histamine, amino nitrogen, total viable cell counts, coliform bacteria and Escherichia coli counts as the quality index in salted shrimp were investigated during fermentation. Results show that the effect of salt concentration on changes in quality index was not high compared with fermentation temperature (10 and $20^{\circ}C$) in salted shrimp treated with 10% and 20% salt concentration. However, effect of salt concentration and fermentation temperature on the quality index was not significant with 30% salt concentration. And all most whole changes of quality index were rapidly increased or decreased for 30 days of fermentation.

Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in Escherichia coli

  • Zhou, Shenghu;Hao, Tingting;Zhou, Jingwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1574-1582
    • /
    • 2020
  • Flavonoids have diverse biological functions in human health. All flavonoids contain a common 2-phenyl chromone structure (C6-C3-C6) as a scaffold. Hence, in using such a scaffold, plenty of high-value-added flavonoids can be synthesized by chemical or biological catalyzation approaches. (2S)-Naringenin is one of the most commonly used flavonoid scaffolds. However, biosynthesizing (2S)-naringenin has been restricted not only by low production but also by the expensive precursors and inducers that are used. Herein, we established an induction-free system to de novo biosynthesize (2S)-naringenin in Escherichia coli. The tyrosine synthesis pathway was enhanced by overexpressing feedback inhibition-resistant genes (aroGfbr and tyrAfbr) and knocking out a repressor gene (tyrR). After optimizing the fermentation medium and conditions, we found that glycerol, glucose, fatty acids, potassium acetate, temperature, and initial pH are important for producing (2S)-naringenin. Using the optimum fermentation medium and conditions, our best strain, Nar-17LM1, could produce 588 mg/l (2S)-naringenin from glucose in a 5-L bioreactor, the highest titer reported to date in E. coli.

Optimization of Fermentation Condition for Red Ginseng Wine Using Response Surface Methodology. (반응표면분석을 이용한 홍삼주 발효조건 최적화)

  • Kim, Seong-Ho;Kang, Bok-Hee;Noh, Sang-Gyun;Kim, Jong-Guk;Lee, Sang-Han;Lee, Jin-Man
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.556-564
    • /
    • 2008
  • Response surface methodology was used to monitor the optimization of fermentation conditions for red ginseng wine. A central composite design was applied to investigate the effects of independent variables, fermentation temperature ($X_1$), fermentation time ($X_2$) and initial pH ($X_3$) on dependent variables, physicochemical characteristics and effective ingredients. Alcohol and total sugar content were significantly affected both by fermentation temperature and time. Crude saponin content was greatly affected by fermentation time, and pH was significantly affected by initial pH. Fermentation time and initial pH had a greater effect on ginsenoside content than fermentation temperature. Ginsenoside content increased along with fermentation time and initial pH. We elicited a regression formula for each variable, and superimposed the total optimum points of fermentation conditions for physicochemical characteristics and the effective constituents. The predicted values at the optimum fermentation conditions were at $21{\sim}27^{\circ}C$ for $15{\sim}20$ day in initial pH $4.6{\sim}5.2$.

Physiochemical Characteristics of Cheongju by Low Temperature Fermentation (저온발효에 의한 청주의 이화학적 특성 연구)

  • Shim, Yoo-Mee;Lee, Sang-Hyeon;Cheong, Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.492-501
    • /
    • 2016
  • This study was conducted to investigate the physiochemical characteristics of Cheongju prepared using different types of rice (rice and glutinous rice) according to addition rate of Nuruk during low temperature fermentation. The characteristics of Cheongju prepared using three different temperatures ($10^{\circ}C$, $18^{\circ}C$, $25^{\circ}C$) were compared. After fermentation for 30-50 days, the pH of mash prepared at lower temperature was lower, as was that of mash made from rice relative to that prepared using glutinous rice. The total acidity was formed at lower temperature and generated in mashing prepared by glutinous rice. The organic acid content of mash made from rice at $18^{\circ}C$ was lowest, while that of mash prepared from glutinous rice was lowest at $10^{\circ}C$. The fermentation speed was lowest at $10^{\circ}C$; however, low temperature fermentation resulted in the highest alcohol content. The mash prepared from glutinous rice showed faster fermentation than that made from rice. In addition, the pH was lower when lower levels of Nuruk were added and higher in mash made from glutinous rice than that prepared from rice. The lower addition rate of Nuruk also showed a lower sugar content and final alcohol content. The levels of citric acid and lactic acid were higher, while those of succinic acid, acetic acid, and ethyl acetate were lower when lower levels of Nuruk were added. The mash prepared from glutinous rice showed a higher alcohol content than that made from rice.

Optimum Conditions for the Formation of Acetoin as a Precursor of Tetramethylpyrazine during the Citrate Fermentation by Lactococcus lactis subsp. lactis biovar. diacetilactis FC1

  • Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.202-206
    • /
    • 1991
  • To produce acetoin as a precursor of the tetramethylpyrazine flavor compound from citrate by Lactococcus lactis ssp. lactis biovar. diacetilactis FC1, fermentation factors such as inital pH of culture media, temperature, concentration of Na-citrate, thiamin-HC1 and sugars were examined. The best acetoin production was achieved with initial pH in the culture media of 5.5, fermentation temperature of $34^{\circ}C$, Na-citrate concentration of 3%, addition of thiamin-HC1 at 2 mg/l and galactose as a carbon source. When fermentation was carried out under the optimum conditions, the exhaustion of Na-citrate and the production of acetoin took simultaneously and acetoin reached the maximum content, 80 mmole/l after 20 hours.

  • PDF

Optimum Conditions for the Formation of Ammonia as a Precursor of Tetramethylpyrazine by Lactococcus lactis ssp. lactis biovar. diacetilactis FC1

  • Kim, Kyoung-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.281-284
    • /
    • 1991
  • To investigate the optimum conditions for the production of ammonia as a precursor of tetramethylpyrazine flavor compound from arginine by Lactococcus lactis ssp. lactis biovar. diacetilactis FC1, fermentation factors such as initial pH of culture media, fermentation temperature, concentration of arginine-HC1, and sugars were examined. The optimum conditions were initial pH 5.5 of the culture media, fermentation temperature of $34^{\circ}C$, 6% (w/v) of arginine-HC1, and 1% (w/v) of galactose as a carbon source. Under the optimum fermentation conditions, 40 mmole/l of ammonia was produced after 40 h.

  • PDF

Fermentation of Waste Woody Biomass for the Production of Bioenergy (바이오에너지생산을 위한 목질계 폐바이오매스의 발효)

  • Cho, Nam-Seok;Choi, Tae-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.147-158
    • /
    • 2008
  • In this study, fermentation characteristics of waste agricultural and forest biomass for production of heat energy were focused to be used in agricultural farm households. The purpose of this study was focused on seeking practical utilization of agricultural and forest biomass wastes in agricultural farm households in the form of thermal energy by means of simple fermentation process. Fermentation process was performed in terms of different raw-materials and their mixture with different ratios. Urea, lime, and bioaids were added as fermenting aids. Moisture contents of fermenting substrates were adjusted to 55~65%. In order to optimize the fermentation process various factors, such as raw-materials, moisture contents, amount of fermenting aids, and practical measurement of hot-water temperature during fermentation were carefully investigated. The optimum condition of fermenting process were obtained from hardwood only and hardwood: softwood (50 : 50) beds. In case of hardwood only the highest temperature was recorded between 60 to $90^{\circ}C$ the lowest temperature was determined to more or less $40^{\circ}C$ and the average temperature was ranged to $50{\sim}60^{\circ}C$ and this temperature ranges were maintained up to 20~30 days. The optimum amount of additives were estimated to ca. 15 kg of urea, 20 kg of bioaids, and 10 kg of lime for 1 ton of substrate. To reach the highest temperature the optimum moisture content of fermenting substrate was proved to 55% among three moisture content treatments of 45%, 55% and 65%. The temperature of hot-water tank installed in fermenting bed of hardwood : grass (50 : 50) showed very different patterns according to measuring positions. In general, temperatures in the mid- and upper-parts of substrate piling were relative higher than lower and surface parts during 45-day fermentation process. The maximum temperature of fermenting stage was determined to $65^{\circ}C$, minimum temperature, more or less $40^{\circ}C$, and average temperature was $60^{\circ}C$. The water temperature of tank exit was ranged to $33{\sim}48^{\circ}C$ during whole measuring periods. It could be concluded that fermentation process of waste agricultural and forest biomass produces a considerable amounts of heat, averaging about $50{\sim}60^{\circ}C$ for maximum 3 months by using the heat exchanger (HX-helical type).

Changes in physicochemical property and lactic acid bacterial community during kimchi fermentation at different temperatures

  • Lee, Hee Yul;Haque, Md. Azizul;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • This study aimed to investigate the change in physicochemical properties and lactic acid bacterial communities during kimchi fermentation at different temperatures (8, 15, and 25 ℃) using two molecular genetics approaches, multiplex polymerase chain reaction and 16S rRNA gene sequencing. The pH during fermentation at 8, 15, and 25 ℃ decreased from 6.17 on the initial fermentation day to 3.92, 3.79, and 3.48 after 54, 30, and 24 days of fermentation, respectively, while the acidity increased from 0.24% to 1.12, 1.35, and 1.54%, respectively. In particular, the levels of lactic acid increased from 3.74 g/L on the initial day (day 0) to 14.43, 20.60, and 27.69 g/L during the fermentation after 24, 18, and 12 days at 8, 15, and 25 ℃, respectively, after that the lactic acid concentrations decreased slowly. The predominance of lactic acid bacteria (LAB) in the fermented kimchi was dependent on fermentation stage and temperature: Lactobacillus sakei appeared during the initial stage and Leuconsotoc mesenteroides was observed during the optimum-ripening stage at 8, 15, and 25 ℃. Lac. sakei and Lactobacillus plantarum grew rapidly in kimchi produced at 8, 15, and 25 ℃. In addition, Weissella koreensis first appeared at days 12, 9, and 6 at 8, 15, and 25 ℃ of fermentation, respectively. This result suggests that LAB population dynamics are rather sensitive to environmental conditions, such as pH, acidity, salinity, temperature, and chemical factors including free sugar and organic acids.

Hybridization에 의한 반수체 재조합 효모균주의 전분 발효능 증진

  • Park, Sun-Young;Kim, Keun;Lee, Chang-Hoo
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.726-732
    • /
    • 1996
  • To improve the fermentation characteristics(such as starch-degradability, ethanol tolerance, sugar and high-temperature tolerance) of recombinant haploid yeast Saccharomyces diastaticus K114, hybridization technique was used. The hybridization partner was S. diastaticus 1177 which had good glucoamylase activity and fermentabi- lity. The best hybrid HH64 showed improved ethanol tolerance, sugar and high-temperature tolerance. Especia- lly, the starch-fermentability was significantly improved, since the hybrid produced 1.60% (w/v) ethanol from 4% (w/v) starch, while the recombinant haploid K114 produced 1.30% (w/v) ethanol. The optimum temperature and pH for the starch-fermentation by the hybrid HH64 was 30$\circ$C and 5, respectively. The hybrid yeast HH64 produced 7.5% (w/v) ethanol directly from 20% (w/v) starch.

  • PDF