• Title/Summary/Keyword: fermentation control

Search Result 1,799, Processing Time 0.021 seconds

Effect of Pectinase Treatment on Extraction Yield of the Juice of Fragaria ananassa Duch. and the Quality Characteristics of Strawberry Wine during Ethanolic Fermentation (딸기 과즙의 수율과 딸기 발효주의 품질에 대한 pectinase 처리의 영향)

  • Jeong, Eun-Jeong;Kim, Min-Hwa;Kim, Yong-Suk
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.72-78
    • /
    • 2010
  • To develop a low-ethanol strawberry wine, the use of pectinase to improve the extraction yield of strawberry juice was investigated, and changes in physicochemical characteristics during ethanolic fermentation were assessed. The juice yield from strawberry fruit increased by 18.9% after Viscozyme L treatment (1,000 ppm, 30 min), compared with a control group, a greater increase than seen with other pectinases (17.5-18.7%). No significant quality differences were observed between control juice and juice prepared with enzyme treatment, indicating that neither physicochemical characteristics nor ethanol content during fermentation were affected by pectinase treatment. The major pigments of strawberry juice were cyanidin-3-glucoside and pelargonidin-3-glucoside, both of which are anthocyanins. The pigment level after enzyme treatment was slightly lower than that of the control group, at all fermentation times. We consider that the economics of strawberry wine manufacture may be increased by use of pectinase because juice level was increased, but no change in ethanol content or physicochemical characteristics was apparent.

The Effect of Dissolved Oxygen on Microbial Transglutaminase production by Streptoverticillium morbaraense (용존산소 농도 조절이 미생물유래 Transglutaminase 생산에 미치는 영향)

  • 유재수;전계택;정용섭
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • The effect of dissolved oxygen(DO) on microbial transglutaminase(mTG) production by Streptoverticillium morbaraense was studied in on-line computer controlled fermentation system. In order to control dissolved oxygen during fermentation, the agitation speed and aeration rate of 2.5 L fermenter ranged from 260 to 360 rpm and 0.3 to 3.9 L/min, respectively. The maximum microbial transglutaminase production was obtained at controlled 20% of dissolved oxygen among the various dissolved oxygen controlled batch cultures tested. The production of microbial transglutaminase at controlled 20% of dissolved oxygen was about 2.12 U/mL which was 1.1 times higher than that obtained in batch culture without control of dissolved oxygen. Also, the highest microbial transglutaminase production was obtained in fed-batch cultures in which dissolved oxygen was controlled at 20%, and it was improved almost 1.3 times in comparison with that without control of dissolved oxygen. Maximal dry cell weight and microbial transglutaminase production were 13.2 g/L and 2.6 U/mL, respectively. Finally, it was also found that fed-batch fermentation at controlled 20% of dissolved oxygen showed a good performance for the microbial transglutaminase production by on-line computer controlled fermentation system which may be generally applicable to other microbial cultures.

Tempeh Fermentation from a Mixture of Soybean and Sorghum Grain (대두-수수 혼합곡물의 템페발효)

  • Kim, Chong-Tai;Kim, Chul-Jin;Kim, Dong-Chul;Kwon, Tae-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.668-674
    • /
    • 1990
  • Tempeh-type fermented products were prepared from soybean, sorghum or mixture of soybean and sorghum(1 : 1) with the traditional Indonesian inoculum(LARU : mixed cultures of Rhizopus oligosporus). Fermentation increased protein and fiber contents in the soybean tempeh(ST) and tempeh of soybean-sorghum mixture(SSM). Fat content was slightly higher in sorghum tempeh(SGT) and SSM than that of control. During the fermentation, pH, soluble solid and soluble nitrogen were increased, while no significant change was found in the total solids. The trypsin inhibitor activity(TIA) and phytic acid content decreased after 32 hrs fermentation. It is suggested that Rhizopus oligosporus is capable of hydrolyzing trypsin inhibitor and phytic acid of the substrate. Thiamine and niacin contents increased in all samples as compared with the unfermented control. In amino acid level, there were some decreased in total amino acids after 32 hrs fermentation in three types of tempeh. While the concentrations of lysine, valine. tyrosine and alanine in ST, SGT and SSM were increased those of serine and glutamic acid were decreased in compare to the unfermented control.

  • PDF

Physicochemical properties of kombucha with fruit peels during fermentation (과일 껍질을 첨가한 콤부차의 발효 중 이화학적 특성)

  • Tae Yeon Lee;Young Hyoun Yi
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.321-333
    • /
    • 2023
  • The study investigated the pH, acidity, soluble solids, total sugar, polyphenol, flavonoid, anthocyanin content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and color of kombucha with a variety of added fruit peels during the fermentation process. Pear, grape, plum, orange, apple, and golden kiwi peels were added during fermentation. The pH showed a decrease, while an increase in acidity was observed. An increase in soluble solids, which was higher in most experimental groups than the control group, was also observed. A decrease in total sugar was observed over time. However, an increase was observed in reducing sugar. On Day 0, higher total sugar and reducing sugar were detected in the peel addition group compared with the control group. The antioxidant capacity of polyphenol, flavonoid, anthocyanins, and DPPH radicals scavenging increased with fermentation and was higher in all addition groups, except for pear, compared with the control group. Except for grapes and plums containing high levels of anthocyanins, an increase in the L-value was observed over time, and an increase in the a-value of grapes and plums was also observed (p<0.05). The possible utilization of inedible fruit peel in kombucha was shown. Applying inedible fruit peels to kombucha is proposed to increase antioxidant content and modulate color and pH.

Effects of Supplementation of Synbiotic Co-cultures Manufactured with Anaerobic Microbes on In Vitro Fermentation Characteristics and In Situ Degradability of Fermented TMR (혐기성 미생물로 제조한 synbiotics 혼합배양물의 첨가가 발효 TMR의 발효특성과 소실률에 미치는 영향)

  • Lee, Shin-Ja;Shin, Nyeon-Hak;Hyun, Jong-Hwan;Kang, Tae-Won;An, Jung-Jun;Jung, Ho-Sik;Moon, Yea-Hwang;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1538-1546
    • /
    • 2009
  • This study was conducted to estimate the in vitro fermentation characteristics and in situ degradabilities of total mixed rations fermented by the synbiotic co-cultures composed of various anaerobic microorganisms in the rumen of cow. Seventy two TMR bags (4 treatments $\times$ 6 fermentation days $\times$ 3 replications) were manufactured for in vitro and in situ experiments. The experiment was composed of four treatments including the control, the mould and bacteria synbiotics (T1), the mould and yeast synbiotics (T2) and the bacteria and yeast synbiotics (T3). Each treatment had six fermentation days (1, 3, 5, 7, 14, 21 day) with three replications. Two rumen cannulated Holstein cows (550 ㎏ of mean body wt) were used for in situ trial, and a total of 96 nylon bags were retrieved from the rumen according to eight fermentation times (1, 3, 6, 9, 18, 24, 48 and 72 hr). The mean fermentation temperatures of TMRs by supplementation of anaerobic micoorganism co-cultures ranged from $22.97^{\circ}C$ to $26.07^{\circ}C$, and tended to increase steadily during the entire period. pH values of the F-TMRs ranged from 4.39 to 4.98 and tended to decrease with the extension of the fermentation period, and decreased by supplementation of synbiotics (p<0.05). The ammonia concentrations of F-TMRs were not affected by addition of synbiotic co-cultures during the early fermentation period (within 7 days), but was lowest (p<0.05) in T3 during the late fermentation periods (after 14 days). Lactic acid concentration of F-TMR was lowest in T3 at 1 day of fermentation, but was not different from treatments in the other fermentation days. Microbial growth rates of F-TMR reached a peak at 7 days of fermentation, and afterward tended to decrease. In in situ experiment, the DM disappearance rates were higher in T1 than the control during early fermentation times (within 3 hours), but was vice versa at 48 hours of fermentation (p<0.05). There was no significant difference in effective DM degradability among treatments. NDF and ADF disappearance rates in situ were similar to those of DM. From the above results, the supplementation of synbiotics, particularly the mould and bacteria synbiotics, resulted in improving the pH and concentration of lactic acid of F-TMR as parameters of fermentation compare to the control, and also had higher in situ disappearance rates of DM, NDF and ADF than the control at early fermentation time. However, effective DM degradability was not affected by supplementation of synbiotics.

Effects of Different Additives on Fermentation Characteristics and Protein Degradation of Green Tea Grounds Silage

  • Wang, R.R.;Wang, H.L.;Liu, X.;Xu, C.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.616-622
    • /
    • 2011
  • This study evaluated the fermentation characteristics and protein degradation dynamics of wet green tea grounds (WGTG) silage. The WGTG was ensiled with distilled water (control), or lactic acid bacteria (LAB), enzyme (E), formic acid (FA) and formaldehyde (FD) prior to ensiling. Three bag silos for each treatment were randomly opened at 0, 3, 7, 14, 28 and 60 days after anaerobic storage. For all the treatments, except for FA, there was a rapid decline in pH during the first 7 days of ensiling. LAB treatment had higher lactic acid content, lower ammonia-N ($NH_3$-N) and free-amino nitrogen (FAA-N) contents than other treatments (p<0.05). E treatment had higher lactic acid, water-soluble carbohydrates (WSC) and non-protein nitrogen (NPN) content than the control (p<0.05). FA treatment had higher $NH_3$-N and FAA-N content than the control (p<0.05). FD treatment had lower NPN and FAA-N content than the control, but it did not significantly inhibit the protein degradation when compared to LAB treatment (p>0.05). Results indicate that LAB treatment had the best effect on the fermentation characteristics and protein degradation of WGTG silage.

Effect of Onion on Kimchi Fermentation ( I ) (양파가 김치 발효에 미치는 영향( I ))

  • 이진희;이혜수
    • Korean journal of food and cookery science
    • /
    • v.8 no.1
    • /
    • pp.27-30
    • /
    • 1992
  • The changes on the pH and acidity of kimchi with the addition of different amounts of onion were inverstigated during fermentation at $14^{\circ}C$ and $21^{\circ}C$ for 20 days. As the fermentation period increases, the pH of kimchi contained onion was higher than that of control kimchi, and tokal, volatile and non-volatile acidity of kimchi contatined onion were lower than those of control kimchi, at $14^{\circ}C$ and $21^{\circ}C$.

  • PDF

Alcohol Productivity Using Starchy Raw Material in Pilot Scale Multi-stage CSTR (Pilot Scale Multi-stage CSTR에서 전분질 원료를 이용한 알콜 생산)

  • Nam, Ki-Du;Lee, In-Ki;Cho, Hoon-Ho;Kim, Woon-Sik;Suh, Kuen-Hack;Ryu, Beung-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.80-84
    • /
    • 1994
  • In order to induce the rapid alcohol fermentation through the increases of the cell density in a continuous alcohol fermentation of naked barley, the single-cultivation with S. cerevisiae IS-019(SCM, ordinary control), mixed-cultivation with Saccharomyces uvarum IS-026 having a flocculent ability and S. cerevisiae IS-019(MCM), and mash recirculation by single-cultivation of S. cerevisiae IS-019(MRM) modes were investigated. The cell mass in the mixed-cultivation mode was about 10% higher than that of ordinary control but the final alcohol yield was slightlyl decreased. When recycled the mash with the flow rate of 7 l/h from V$_{6}$ to V$_{5}$ fermentors under the ordinary control, the cell density was distributed at 140~170$\times $10$^{6}$ cell/ml depending upon the fermentorsorders, higher about 20% than that of the ordinary control. Under these conditions the alcohol productivity of the maximum and the overall was 12.16 g/l$\cdot $h with an alcohol of 7.6% at the V$_{5}$ fermentor and 1.19 g/l$\cdot $h with an alcohol of 8.94%, respectively. For higher cell mass it was more effective to apply the mash recirculation mode with the single-cultivation of S. cerevisiae IS-019 in a pilot scale multi-stage CSTR.

  • PDF

The Promoting Effect of Cornus officinalis fermented with Lactobacillus rhamnosus on Hair Growth (산수유 유산균 발효액의 모발성장 효과)

  • Park, Jang-Soon;Lee, Jae-Sug
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.3
    • /
    • pp.260-264
    • /
    • 2011
  • The bacterial growth and pH of Cornus officinalis fermented with Lactobacillus rhamnosus during fermentation were evaluated. As the results, the number of the fermentation after fermentation always remained higher than 6 log CFU/mL and the pH of those ranged from 4 to 6. To evaluate the effect of Cornus officinalis fermented with Lactobacillus rhamnosus on hair growth promotion in C57BL/6 mice, Six weeks old male mice were divided into four groups including normal group (saline), negative control group (essence base), positive control group (minoxidil) and experimental group (Cornus officinalis and animal milk fermented with Lactobacillus rhamnosus mixed in negative control). And they were applied topically with test materials for 8 days. Hair regrowth effect in experimental group using gross and histological examination was higher than that in positive control group. Body weight and food intake of four groups didn't show significant difference. These results indicated that the Cornus officinalis fermented with Lactobacillus rhamnosus can be used practically for hair growth or prevention of hair loss.

Changes in microbial community and physicochemical characterization of Makgeolli during fermentation by yeast as a fermentation starter (효모 첨가 유무에 따른 막걸리의 발효 중 미생물 군집 및 이화학적 특성 변화)

  • Choi, Ji-Hae;Lim, Bo-Ra;Kang, Ji-Eun;Kim, Chan-Woo;Kim, Young-Soo;Jeong, Seok-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.529-537
    • /
    • 2020
  • This study was carried out to confirm changes in the microbial community and physicochemical characteristics of Korean traditional Makgeolli during fermentation by yeast as a fermentation starter. We demonstrate that the microbial community during fermentation affects the quality of Makgeolli. At the species level, Pediococcus pentosaceus, Weissella confusa, Pantoea vagans, and Lactobacillus graminis were dominant on fermentation mix, after 1-2 days, in the control group without yeast treatment. Acid production in the control group was higher than that in the yeast-treated group. P. pentosaceus was dominant throughout the fermentation process, and the proportion of P. vagans remarkably decreased following yeast addition. Considering quality characteristics, the alcohol content rapidly increased after yeast addition, and the lactic acid content was lower in the yeast-treated group than in the control. These results suggest that the rapid increase in alcohol at the start of fermentation inhibits the growth of lactic acid-producing bacteria. The addition of yeast may contribute to the reduction in the high amount of lactic acid, which can be one of the causes of changes in Makgeolli quality.