• Title/Summary/Keyword: fermentation control

Search Result 1,799, Processing Time 0.023 seconds

Optimization of Direct Lysine Decarboxylase Biotransformation for Cadaverine Production with Whole-Cell Biocatalysts at High Lysine Concentration

  • Kim, Hyun Joong;Kim, Yong Hyun;Shin, Ji-Hyun;Bhatia, Shashi Kant;Sathiyanarayanan, Ganesan;Seo, Hyung-Min;Choi, Kwon Young;Yang, Yung-Hun;Park, Kyungmoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1108-1113
    • /
    • 2015
  • Cadaverine (1,5-diaminopentane) is an important industrial chemical with a wide range of applications. Although there have been many efforts to produce cadaverine through fermentation, there are not many reports of the direct cadaverine production from lysine using biotransformation. Whole-cell reactions were examined using a recombinant Escherichia coli strain overexpressing the E. coli MG1655 cadA gene, and various parameters were investigated for the whole-cell bioconversion of lysine to cadaverine. A high concentration of lysine resulted in the synthesis of pyridoxal-5'-phosphate (PLP) and it was found to be a critical control factor for the biotransformation of lysine to cadaverine. When 0.025 mM PLP and 1.75 M lysine in 500 mM sodium acetate buffer (pH6) were used, consumption of 91% lysine and conversion of about 80% lysine to cadaverine were successfully achieved.

Volatile Flavor Compounds in Low Salt-Fermented Ascidians Halocynthia roretzi Made by Flavor Enhancing (향미 개선 저식염 우렁쉥이(Halocynthia roretzi) 젓갈의 휘발성 향기성분)

  • Cha, Yong-Jun;Jeong, Eun-Jeong;Yu, Daeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.273-280
    • /
    • 2020
  • Volatile compounds in fermented ascidians Halocynthia roretzi were analyzed to identify key flavor compounds using SPME/GC/MSD (solid phase microextraction/gas chromatography/mass selective detector) after 60 days of fermentation at 5℃. The control was chopped ascidians subject to anti-browning and 4% salt treatment. product A was made from product C by adding an alcohol extract of red peppers and onion peel, 0.1% of glucose, and 0.55% of mixed amino acids (MAA; 0.05% Glu, 0.1% Pro, 0.3% Ala, and 0.1% Gly). After blanching and anti-browning treatment of chopped ascidians, Product B1 was made by adding 3% anchovy sauce and 6% sorbitol. Product B2 was made by adding 0.1% glucose and 0.55% MAA to Product B1. In total, 78 compounds were identified, including 31 alcohols, 15 aldehydes, and 10 ketones. The alcohols included 12 compounds from the C8-C10 series with floral and fruit odors, including octanol, 3-methyloctanol, 2,6-dimethyl-1-heptanol, (E)-5-octen-1-ol, 6-methyloctanol, (E)-3-octen-1-ol, (E)-3-decen-1-ol, (Z)-1,5-octadien-3-ol, and nonanol. These were detected in high amounts in ascidians and all fermented products. Aldehydes (octanal, (E)-2-octenal, 2,4-heptadienal, and nonanal) and ketones (1-oten-3-one and 2-heptanone) with fatty and mushroom odors were detected as major compounds, whereas nine ethyl esters were detected only in product A.

High-Level Expression of Aspergillus ficuum Acetyl Xylan Esterase Gene in Pichia pastoris, (Pichia pastoris에서 Aspergillus ficuum 유래 Acetyl Xylan Esterase 유전자의 과발현)

  • 임재명;김성구;박승문;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.305-311
    • /
    • 2002
  • Acetyl xylan esterase gene (AXE) from Aspergillus ficuum was cloned and its Pichia expression plasmid, pPICZ$\alpha$C-AXE (4.6 kb), was constructed, in which the AXE gene was under the control of the AOXI promoter and connected downstream of mating factor u-1 signal sequence. The plasmid linearized by Sacl was integrated into the 5'AOXI region of the chromosomal DNA of P. pastoris. In the flask batch culture of P. pastoris transformant on methanol medium, the cell concentration and total AXEase activity reached at 6.0 g-dry cell weight/1 and 77 unit/ml after 36 h cultivation, respectively. In the fed-batch culture employing the optimized methanol and histidine feeding strategy, the cell concentration and total AXEase activity were significantly increased to about 97 g-dry cell weight/1 and 930 unit/ml. Most of AXEase activity (>90%) was found in the extracellular medium and the majority of extracellular protein (>80%) was AXEase enzyme (33.5 kDa). This result means that about 9.8 g/1 of AXEase protein was produced in the extracellular medium.

The Effect of Redox Potential on the Kinetics of Lysine Production by Corynebacterium glutamicum (Corynebacterium glutamicum에 의한 Lysine 생산에 있어서 산화환원 전위가 발효속도론적 특성에 미치는 영향)

  • 이진희;김성준;이재흥
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.76-81
    • /
    • 1991
  • - The effect of redox potential (ORP) on lysine production by a leucine auxotrophic regulatory mutant of Corynebacterium glutclmicum on molasses medium was investigated in a 2-1 jar fermentor at pH 6.9 and $32^{\circ}C$. At a dilution rate of D=O.l $h ^1$, a maximum yield of Yr,,s=0.24 was obtained in either carbon- or leucine-limited chemostat where the redox potential was between -60 mV and - 100 mV. This level of redox potential corresponded to moderate oxygen deficiency. Under a high oxygen deficient condition of the redox potential of - 130 rnV (oxygen-limited chemostat), all the kinetic parameters such as $Y_[p/s}, q_s\; and \; q_p$ were decreased significantly and significant amounts of byproducts including glycine, alanine and valine were accumulated in the culture, indicating that the control of redox potential is important in lysine fermentation. At the redox potential of - 40 mV, on the other hand, large quantities of arginine (up to 0.38g/l) and glutamic acid (up to 0.12 g/l) were produced. A maximum lysine productivity of 2.41 g/l/h was achieved at - 66 mV under a carbon-limited condition.

  • PDF

Effects of Glycerol and Shikimic Acid on Rapamycin Production in Streptomyces rapamycinicus

  • La, Huyen Thi Huong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy;Nguyen, Quyen Minh Huynh;Nguyen, Minh Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.296-302
    • /
    • 2020
  • Rapamycin, derived from Streptomyces rapamycinicus, is an important bioactive compound having a therapeutic value in managing Parkinson's disease, rheumatoid arthritis, cancer, and AIDS. Because of its pharmaceutical activity, studies over the past decade have focused on the biosynthesis of rapamycin to enhance its yield. In this study, the effect of rapG on rapamycin production was investigated. The rapG expression vector was constructed by utilizing the integration vector pSET152 under the control of the erythromycin resistance gene (ermE), a strong constitutive promoter. The rapamycin yield of wild type (WT) and WT/rapG overexpression mutant strains, under fermentation conditions, was analyzed by high-performance liquid chromatography (HPLC). Our results revealed that overexpression of rapG increased rapamycin production by approximately 4.9-fold (211.4 mg/l) in MD1 containing 15 g/l of glycerol, compared to that of the WT strain. It was also found that Illicium verum powder (10 g/l), containing shikimic acid, enhanced rapamycin production in both WT and WT/rapG strains. Moreover, the amount of rapamycin produced by the WT/rapG strain was statistically higher than that produced by the WT strain. In conclusion, the addition 15 g/l glycerol and 15 g/l I. verum powder produced the optimal conditions for rapamycin production by WT and WT/rapG strains.

Cytotoxicity on Human Cancer Cells and Antitumorigenesis of Chungkookjang, a Fermented Soybean Product, in DMBA-Treated Rats (청국장의 암세포생장억제효과 및 흰쥐에서 DMBA 투여에 의한 유방종양발생 억제효과)

  • Kwak Chune-Shil;Kim Mee-Yeon;Kim Sung-Ae;Lee Mee-Sook
    • Journal of Nutrition and Health
    • /
    • v.39 no.4
    • /
    • pp.347-356
    • /
    • 2006
  • It is reported that a fermented soybean food, Doenjang, has srong antimutagenic and cytotoxic effect on cancer cells. This study investigated the effect of Chungkookjang, another traditional popular Korean soybean fermented food, on growth of cancer cells: HL-60, SNU-638 and MCF-7, and also its in vivo antitumorigenic effect in DMBA-induced mammary tumor rat model. For the in vitro study, Chungkookjang and steamed soybeans were extracted with ethanol and sequentially fractioned with 5 kinds of solvents differing in grades of polarity such as hexane, dichloromethane, ethylacetate, butanol and water. Almost all Chungkookjang extracts significantly inhibited the growth of HL-60 (human leukemic cancer cell), SNU-638 (human gastric cancer cell) and MCF-7 (human breast cancer cell) when compared to steamed soybean extracts. Butanol fraction of Chungkookjang extract especially showed a remarkable inhibitory effect in all the three kinds of cancer cells. To induce a mammary gland tumor, DMBA (50 mg/BW) was administered to 50 day-old female rats and followed by Chungkookjang or steamed soybean supplemented diets. Freezedried Chungkookjang powder (20% of diet in wet weight) was added to AIN-93G based diet for the Chungkookjang group of rats. Likewise, steamed soybean powder containing equal protein content to that of Chungkookjang powder was supplemented to soybean group of rats. At 13 weeks later, the mammary tumor incidence, average tumor number and tumor weight a rat were lower in Chungkookjang group compared to the control or soybean group. In conclusion, Chungkookjang showed a strong inhibitory effect on cancer cell growth in vitro, as well as a more preventive effect against chemically induced mammary tumorigenesis in vivo, while steamed soybeans did not. Therefore, these results suggest that Chungkookjang acquire its anticancer activity through the fermentation process.

The Role of Gut Microbiota in Obesity and Utilization of Fermented Herbal Extracts (비만에서 장내 미생물 균총의 역할과 발효 한양의 활용)

  • Park, Jung-Hyun;Kim, Ho-Jun;Lee, Myeong-Jong
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Complex microbial communities play an important role in the human health and co-evolved with human in the form of symbiosis. Many literatures provide new evidences that the increased prevalence of obesity cannot be attributed solely to changes in the human genome, nutritional habits, or reduction of physical activity in our daily lives. The intestinal flora was recently proposed as an environmental factor responsible for the control of body weight and energy metabolism. A number of studies suggest that the modulation of gut microbiota affects host metabolism and has an impact on energy storage and demonstrated a role for the gut microbiota in weight gain, fat increase, and insulin resistance. Variations in microbiota composition are found in obese humans and mice and the microbiota from an obese mouse confers an obese phenotype when transferred to an axenic mouse. As well, the gut microbial flora plays a role in converting nutrients into calories. Specific strategies for modifying gut microbiota may be a useful means to treat or prevent obesity. Dietary modulations of gut microbiota with a view to increasing bifidobacteria have demonstrated to reduce endotoxemia and improve metabolic diseases such as obesity. The fermentation of medicinal herbs is intended to exert a favorable influence on digestability, bioavailability and pharmacological activity of herbal extract. Therefore we also expect that the fermented herbal extracts may open up a new area to treat obesity through modulating gut microbiota.

  • PDF

Optimal Treatment of Molasses Wastewater Using UASB Process (UASB 공정에 의한 당밀폐수의 최적처리 방안)

  • Huh, Kwan-Yong;Jeong, Eui-Geun;Chung, Yoon-Jin;Yoo, Sang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.112-127
    • /
    • 1997
  • The purpose of this study is to get optimum operating factors of Upflow Anaerobic Sludge Blanket (UASB) reactor by introducing methods that make it to reduce inhibition possible in each process wastewater treatment. The used substrates, concentrated corn starch liquid (CSL) wastewater, modified starch, filtering and decoloring wastewater, ion refining wastewater, and mixed wastewater including modified starch and not including modified starch, are generated from molasses process. The seeding sludge is the digested sludge that had been applied to molasses wastewater. Batch test to reduce the inhibition factors that might be existed in each wastewater was examined. Based on the this test, the optimum operating factors according to alkalinity and pH variation was studied through the continuous test using three 5.5 L UASB reactor. The first reactor added $NaHCO_3$ to control alkalinity. The hydraulic retention time (HRT) reduced to 8 hours and the organic loading rate increased gradually. The second reactor changed the pH of influent from 7.0 to 6.0 using NaOH. The third reactor was operated without changes to compare the above two reactors. As the result, the inhibition in concentrated CSL wastewater was removed by adding iron (II). When trace metals were added to mixed wastewater not including modified starch, the digestability by gas production rate increased to more fifty percentage than mixed wastewater that was not adding the trace metals. The reason that the inhibition did not decreased in spite of adding trace metals and nutrients was influenced by high concentration generated during the acid fermentation. The UASB reactors using the mixed wastewater with the most effective performance were operated as 500 mg/L as $CaCO_3$ alkalinity and 6.0 pH at steady state, and at this time, the gas production rates were 283 and 311mL gas/g $COD_{added}$. The COD removal rates were 84.7 and 86.3%, respectively.

  • PDF

Production of Bacterial Cellulose by Gluconacetobacter hansenii Using a New Bioreactor Equipped with Centrifugal Impellers (원심 임펠러가 장착된 발효조에서 G. hansenii에 의한 미생물셀룰로오스 생산)

  • Khan, Salman;Shehzad, Omer;Khan, Taous;Ha, Jung Hwan;Park, Joong Kon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.506-511
    • /
    • 2009
  • In order to improve the bacterial cellulose(BC) production yield, centrifugal and inclined centrifugal impellers were developed. A 6 flat-blade turbine impeller was used as a control system. The flow pattern in the fermenter and volumetric oxygen transfer coefficient($k_La$) of these fermentation systems were studied. Fermentations were carried out for the production of BC by G. hansenii PJK in a 2-L jar fermenter equipped with new impellers. Liquid medium was circulated from the bottom, through the cylinder of the impeller and to the wall. The volumetric oxygen transfer coefficients, $k_La$, of inclined centrifugal and centrifugal impeller systems at 100 rpm were 23 and 15% of the conventional turbine impeller system, respectively. However, the conversion of microbial cells to cellulose non-producing mutant decreased and this results in the increase in BC production at low rotating speed of impellers.

Effect of Ammonium Ion on the Production of a Polysaccharide, Methylan from Methanol by Mentylobacterium organophilum (Methylobacterium organophilum에 의한 메탄올로부터 메틸란의 생산에 대한 암모니아 이온의 영향)

  • 오덕근;임현수김정회
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.170-175
    • /
    • 1995
  • The effect of nitrogen source on production of a high viscosity exopolysaccharide, methylan, from methanol by Mentylobacterium organophilum was investigated in fed-batch culture. During the fermentation, cells continued to grow even after the nitrogen source added to the medium was depleted and methylan production was stimulated under the condition which ammonium ion was depleted. Cell growth increased proportionally to the initial concentration of ammonium ion in the medium, but methylan production was significantly inhibited at the high concentration of ammonium ion. As the initial concentration of ammonium ion increased, the specific growth rate, the specific product formation rate and the specific substrate consumption rate decreased due to the inhibitory effect of excess ammonium ions. In order to reduce the inhibitory effect by high concentration of ammonium ion. The control of ammonium ion concentration within the desired level(usually $0.45g/\ell$) was necessary. When ammonium ion concentration was maintained below $0.15g/\ell$ by exponential feeding, methylan production could be increased up to $12.5g/\ell$.

  • PDF