• 제목/요약/키워드: fermentation and bioethanol

검색결과 98건 처리시간 0.022초

강원지역 폐옥수수대로부터 바이오에탄올 생산 : 효소 당화부터 발효까지 (Bioethanol Production from Wasted Corn Stalk from Gangwon Province : from Enzymatic Hydrolysis to Fermentation)

  • 최재민;최석순;염승호
    • 공업화학
    • /
    • 제23권3호
    • /
    • pp.326-332
    • /
    • 2012
  • 다양한 전처리 방법 중에서 묽은 황산법으로 전처리한 폐옥수수대가 효소적 당화 공정을 거쳤을 때 가장 높은 포도당 수율을 보였다. 이 효소적 당화공정을 통계적으로 분석한 결과 효소량, 고액비, 반응시간 모두 당화효율과 비례적인 관계를 보였으며 그 중에서 효소량이 가장 큰 영향을 주는 인자로 파악되었으며 최적 조건에서 76.1%의 당화 효율을 보일 것으로 예측되었다. 분리당화 발효공정에서, Saccharomyces cerevisiae는 효소 당화를 거쳐 얻은 포도당의 80%이상을 에탄올 수율 37%, 생산성 0.42 $g/L{\cdot}hr$로 바이오에탄올을 생산하였다. 동시당화 발효공정에서는 전처리된 시료가 가진 글루칸 59.5%가 0.20 $g/L{\cdot}hr$의 생산성으로 에탄올로 전환되었다. 두 공정을 통해서 얻을 수 있는 폐옥수수대 1 kg 당 바이오에탄올 양은 88 g 정도로 거의 같은 것으로 나타났다. 분리당화 발효공정과 동시당화 발효공정을 통해 강원도 폐옥수수대로부터 생산할 수 있는 바이오에탄올은 수거율 50% 기준으로 약 190만 리터로 예측되었다.

Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates

  • Nguyen, Trung Hau;Ra, Chae Hun;Sunwoo, In Yung;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1259-1266
    • /
    • 2016
  • Bioethanol was produced from Kappaphycus alvarezii seaweed biomass using separate hydrolysis and fermentation (SHF). Pretreatment was evaluated for 60 min at 121℃ using 12% (w/v) biomass slurry with 364 mM H2SO4. Enzymatic saccharification was then carried out at 45℃ for 48 h using Celluclast 1.5 L. Ethanol fermentation with 12% (w/v) K. alvarezii hydrolyzate was performed using the yeasts Saccharomyces cerevisiae KCTC1126, Kluyveromyces marxianus KCTC7150, and Candida lusitaniae ATCC42720 with or without prior adaptation to high concentrations of galactose. When non-adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 11.5 g/l, 6.7 g/l, and 6.0 g/l of ethanol were produced, respectively. When adapted S. cerevisiae, K. marxianus, and C. lusitaniae were used, 15.8 g/l, 11.6 g/l, and 13.4 g/l of ethanol were obtained, respectively. The highest ethanol concentration was 15.8 g/l, with YEtOH = 0.43 and YT% = 84.3%, which was obtained using adapted S. cerevisiae.

Enhanced Biofuel Production from High-Concentration Bioethanol Wastewater by a Newly Isolated Heterotrophic Microalga, Chlorella vulgaris LAM-Q

  • Xie, Tonghui;Liu, Jing;Du, Kaifeng;Liang, Bin;Zhang, Yongkui
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권10호
    • /
    • pp.1460-1471
    • /
    • 2013
  • Microalgal biofuel production from wastewater has economic and environmental advantages. This article investigates the lipid production from high chemical oxygen demand (COD) bioethanol wastewater without dilution or additional nutrients, using a newly isolated heterotrophic microalga, Chlorella vulgaris LAM-Q. To enhance lipid accumulation, the combined effects of important operational parameters were studied via response surface methodology. The optimal conditions were found to be temperature of $22.8^{\circ}C$, initial pH of 6.7, and inoculum density of $1.2{\times}10^8cells/ml$. Under these conditions, the lipid productivity reached 195.96 mg/l/d, which was markedly higher than previously reported values in similar systems. According to the fatty acid composition, the obtained lipids were suitable feedstock for biodiesel production. Meanwhile, 61.40% of COD, 51.24% of total nitrogen, and 58.76% of total phosphorus were removed from the bioethanol wastewater during microalgal growth. In addition, 19.17% of the energy contained in the wastewater was transferred to the microalgal biomass in the fermentation process. These findings suggest that C. vulgaris LAM-Q can efficiently produce lipids from high-concentration bioethanol wastewater, and simultaneously performs wastewater treatment.

Effects of inorganic salts on biomass production, cell wall components, and bioethanol production in Nicotiana tabacum

  • Sim, Seon Jeong;Yong, Seong Hyeon;Kim, Hak Gon;Choi, Myung Suk;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • 제48권4호
    • /
    • pp.278-288
    • /
    • 2021
  • The development of bioenergy through biomass has gained importance due to the increasing rates of fossil fuel depletion. Biomass is important to increase the productivity of bioethanol, and production of biomass with high biomass productivity, low lignin content, and high cellulose content is also important in this regard. Inorganic salts are important in the cultivation of biomass crops for the production of biomass with desirable characteristics. In this study, the roles of various inorganic salts in biomass and bioethanol production were investigated using an in vitro tobacco culture system. The inorganic salts evaluated in this study showed dramatic effects on tobacco plant growth. For example, H2PO4 substantially improved plant growth and the root/shoot (R/S) ratio. The chemical compositions of tobacco plants grown in media after removal of various inorganic salts also showed significant differences; for example, lignin content was high after Mg2+ removal treatment and low after K+ treatment and H2PO4 removal treatment. On the other hand, NO3- and H2PO4 treatments yielded the highest cellulose content, while enzymatic hydrolysis yielded the highest glucose concentration ratio 24 h after NH4+ removal treatment. The ethanol productivity after H2PO4 removal treatment was 3.95% (w/v) 24 h after fermentation and 3.75% (w/v) after 36 h. These results can be used as the basis for producing high-quality biomass for future bioethanol production.

바이오에탄올 제조를 위한 억새의 암모니아-희황산 복합 전처리 (Combined Aqueous Ammonia-Dilute Sulfuric Acid Pretreatment of Miscanthus for Bioethanol Production)

  • 박선태;구본철;최용환;문윤호;안승현;차영록;김중곤;안기홍;서세정;박돈희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.179.1-179.1
    • /
    • 2011
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. The objective of this study was to evaluate the effect of combined aqueous ammonia-dilute sulfuric acid treatment on cellulosic biomass. Miscanthus was pretreated using aqueous ammonia and dilute sulfuric acid solution under high temperature and pressure conditions to be converted into bioethanol. Aqueous ammonia treatment was performed with 15 %(w/w) ammonia solution at $150^{\circ}C$ of reaction temperature and 20 minutes of reaction time. And then, dilute sulfuric acid treatment was performed with 1.0 %(w/w) sulfuric acid solution at $150^{\circ}C$ of reaction temperature and 10 minutes of reaction time. The compositional variations of this combined aqueous ammonia-dilute sulfuric acid treatment resulted in 68.0 % of cellulose recovery and 95.7 % of hemicellulose, 81.3 % of lignin, 89.1 % of ash removal respectively. The enzymatic digestibility of 90.5 % was recorded in the combined pretreated Miscanthus sample and it was 14.7 times higher than the untreated sample. The ethanol yield in the Simultaneous Saccharification and Fermentation was 90.4 % of maximum theoretical yield based on cellulose content of the combined pretreated sample and it was about 98 % compared to the ${\alpha}$-cellulose ethanol yield.

  • PDF

Enzymatic Saccharification of Salix viminalis cv. Q683 Biomass for Bioethanol Production

  • Kim, Hak-Gon;Song, Hyun-Jin;Jeong, Mi-Jin;Sim, Seon-Jeong;Park, Dong-Jin;Yang, Jae-Kyung;Yoo, Seok-Bong;Yeo, Jin-Ki;Karigar, Chandrakant S.;Choi, Myung-Suk
    • Journal of Forest and Environmental Science
    • /
    • 제27권3호
    • /
    • pp.143-149
    • /
    • 2011
  • The possibility of employing biomass of Salix viminalis cv. Q683 as a resource of bio-energy was evaluated. The chemical analysis of S. viminalis cv. Q683 leaf biomass showed components such as, extractives (2.57%), lignin (39.06%), hemicellulose (21.61%), and cellulose (37.83%), whereas, its stem was composed of extractives (1.67%), lignin (23.54%), hemicellulose (33.64%), and cellulose (42.03%). The biomass of S. viminalis cv. Q683 was saccharified using two enzymes celluclast and viscozyme. The saccharification of S. viminalis cv. Q683 biomass was influenced by enzymes and their strengths. The optimal enzyme combination was found to be celluclast (59 FPU/g substrate) and viscozyme (24 FBG/g substrate). On saccharification the glucose from leaf and stem biomass was 7.5g/L and 11.7g/L, respectively after 72 hr of enzyme treatment. The biomass and enzyme-treated biomass served as the feedstock for ethanol production by fermentation. The ethanol production from stem and leaf biomass was 5.8 g/L and 2.2 g/L respectively, while the fermentation of the enzymatic hydrolysates yielded 5 g/L to 8 g/L bioethanol in 72 hours.

셀룰로오스계 원료작물로서 수수-수단그래스 교잡종의 바이오에탄올 생산량 평가 (Evaluation of Bioethanol Productivity from Sorghum × Sudangrass Hybrid for Cellulosic Feedstocks)

  • 차영록;문윤호;구본철;안종웅;윤영미;남상식;김중곤;안기홍;박광근
    • 한국작물학회지
    • /
    • 제58권1호
    • /
    • pp.71-77
    • /
    • 2013
  • 본 연구는 바이오에탄올 생산용 작물 선발을 위해 국내재배 가능한 일년생 작물중에서 바이오매스 생산량이 우수한 수수-수단그래스 교잡종에 대한 바이오에탄올 생산성을 조사하였으며 그 결과는 다음과 같다. 1. 총 11 품종의 수수-수단그래스 교잡종 대한 화학적 특성 검증 결과 셀룰로오스 함량은 Green Star 품종이 가장 높았으며 발효율 검정을 위해 Green Star, Revolution, KF429 그리고 SS504 4품종을 선발하였다. 2. 선발된 4품종으로부터 발효 당을 추출하기 위해 시료와 1 M NaOH 용매를 1:14의 비율로 혼합하고 $150^{\circ}C$에서 30분간 전처리하였을 때 시료내 셀룰로오스 함량은 55%이상 이였으며, 발효 저해 작용을 하는 리그닌 및 회분 함량은 65%이상 제거 되었다. 3. 전처리물의 당화율 검정을 위해 celli CTEC II 효소 30 FPU/g-cellulose를 사용하였으며 4품종의 당화율은 평균 86%이었다. 4. 수수-수단그래스 교잡종의 발효율 검정은 동시당화발효(SSF)방법으로 수행하였으며 발효균주로는 Saccharomysis cerevisiae CHY1011를 사용하였고, 결과적으로 Green Star의 발효율이 92.4%로 가장 높았으며 에탄올 생산량은 6,206 L/ha임을 확인하였다.

Comparison of Ethanol Yield Coefficients Using Saccharomyces cerevisiae, Candida lusitaniae, and Kluyveromyces marxianus Adapted to High Concentrations of Galactose with Gracilaria verrucosa as Substrate

  • Park, Yurim;Sunwoo, In Yung;Yang, Jiwon;Jeong, Gwi-Teak;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.930-936
    • /
    • 2020
  • The red seaweed Gracilaria verrucosa has been used for the production of bioethanol. Pretreatment for monosaccharide production was carried out with 12% (w/v) G. verrucosa slurry and 500 mM HNO3 at 121℃ for 90 min. Enzymatic hydrolysis was performed with a mixture of commercial enzymes (Cellic C-Tec 2 and Celluclast 1.5 L; 16 U/ml) at 50℃ and 150 rpm for 48 h. G. verrucosa was composed of 66.9% carbohydrates. In this study, 61.0 g/L monosaccharides were obtained from 120.0 g dw/l G. verrucosa. The fermentation inhibitors such as hydroxymethylfurfural (HMF), levulinic acid, and formic acid were produced during pretreatment. Activated carbon was used to remove HMF. Wild-type and adaptively evolved Saccharomyces cerevisiae, Candida lusitaniae, and Kluyveromyces marxianus were used for fermentation to evaluate ethanol production.

Effect of the Growth Period on Bioethanol Production from the Branches of Woody Crops Cultivated in Short-rotation Coppices

  • Jo, Jong-Soo;Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권3호
    • /
    • pp.360-370
    • /
    • 2019
  • Woody crops cultivated in short-rotation coppices are attractive sources of lignocellulosic materials for bioethanol production, since they are some of the most abundant renewable resources. In this study, we evaluated the effects of the growth period on bioethanol production using short-rotation woody crops (Populus nigra ${\times}$ Populus maxiwiczii, Populus euramericana, Populus alba ${\times}$ Populus glandulosa, and Salix alba). The carbohydrate contents of 3-year-old and 12-year-old short-rotation woody crop branches were 62.1-68.5% and 64.0-67.1%, respectively. The chemical compositions of 3-year-old and 12-year-old short-rotation woody crop branches did not vary significantly depending upon the growth period. However, the 3-year-old short-rotation woody crop branches (glucose conversion: 26-40%) were hydrolyzed more easily than their 12-year-old counterparts (glucose conversion: 19-24%). Furthermore, following the fermentation of enzymatic hydrolysates from the crop branch samples (by Saccharomyces cerevisiae KCTC 7296) to ethanol, the ethanol concentration of short rotation coppice woody crops was found to be higher in the 3-year-old branch samples (~ 0.18 g/g dry matter) than in the 12-year-old branch samples (~ 0.14 g/g dry matter). These results suggest that immature wood (3-year-old branches) from short-rotation woody crops could be a promising feedstock for bioethanol production.

팝핑전처리한 스위치그라스로부터 바이오에탄올 생산 (Bioethanol Production from Popping Pretreated Switchgrass)

  • 김현주;배현종
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권3호
    • /
    • pp.147-155
    • /
    • 2012
  • 본 연구에서는 스위치그라스를 바이오에탄올 생산용 바이오매스로 선정하여 팝핑 전처리, 효소가수분해 및 발효 과정을 거쳐 바이오 에탄올의 생산 가능성을 조사하였다. 팝핑 전처리 된 스위치그라스에 효소를 처리하여 가수분해 한 결과 95% 이상의 효소 가수분해 효율을 보였고, 가수분해 후 생성된 당화액을 효모(Saccharomyces cerevisiae)로 발효하였을 때 생산된 바이오에탄올의 수율은 89.6%에 이르렀다. 팝핑 전처리 후 바이오매스의 글루코스와 자일로스의 함량은 각각 40.8%와 20.3%로 나타나 전처리 후 글루코스 함량에는 큰 변화가 없었으나, 자일로스의 함량이 4.7% 감소하는 것으로 보아 헤미셀룰로스 영역이 전처리 과정에서 제거된 것으로 보인다. 또한, 주사형 전자현미경 결과에 의하면 전처리 전에는 스위치그라스 표면이 비교적 매끈하고, 입방체 모양을 이루고 있었으나, 전처리 후에는 섬유가 각각 분리되어 있었으며 표면에 많은 미세공극이 생겨난 것을 관찰할 수 있었다. 그러므로 팝핑 전처리는 스위치그라스 시료의 셀룰로스 노출면적을 넓혀주는 역할을 하여 셀룰레이즈 효소의 접근성을 높여 효소 당화 효율을 증대시키는 것으로 사료된다.