• Title/Summary/Keyword: fermentation ability

Search Result 374, Processing Time 0.028 seconds

Current Progress in the Analysis of Transcriptional Regulation in the Industrially Valuable Microorganism Aspergillus oryzae

  • Nakajima, Keiichi;Sano, Motoaki;Machida, Masayuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.253-262
    • /
    • 2000
  • Aspergillus is considered to be an attractive host for heterologous protein production because of its safety and ability to secrete large amounts of proteins. In order to obtain high productivity, thus far promoters of amylases have been most widely used in A. oryzae. Recent progress in cloning and expression analysis, including EST sequencing, revealed that glycolytic genes represent some of those most strongly expressed in A. oryzae. Therefore, promoters of glycolytic genes could be important alternatives to promoters of amylases because lower amounts of proteases are produced in the presence of glucose. Several A. oryzae transcription factors responsible for the induction and/or maximum expression of many industrially important genes encoding amylases and proteases have been cloned and characterized. In addition to the transcriptional regulatory factors, the gene encoding the largest subunit of RNa polymerase II, constituting the basic transcription machinery, has also been cloned from A. oryzae. This recently acquired understanding of the details of transcriptional regulatory mechanisms and factors will facilitate engineering flexible controls for the expression of proteins important for the fermentation industries.

  • PDF

Antioxidant, anti-acetylcholinesterase and xanthine oxidase inhibitory activities of three extracts from Phellinus igniarius

  • Jin, Ga-Heon;Lee, Min Woong;Im, Kyung Hoan;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This study was initiated to investigate antioxidant, anti-acetylcholinesterase, and xanthine oxidase inhibitory activities and properties of fruiting bodies, mycelia, and fermentation culture filtrates from Phellinus igniarius. The contents of total phenols and flavonoid of fruit bodies, mycelia, and culture filtrate were 15.35-1.36 mg/g, 10.35-7.85 mg/g, and 8.25-5.36 mg/g. The 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities of the extracts from the fruiting bodies, mycelia, and culture filtrates were 90.25-95.60%, 78.82-85.24%, and 76.32-82.50% at $50-400{\mu}g/mL$, respectively. The chelating ability of fruiting body extract on ferrous ions was higher than those of mycelia and culture filtrates tested. The anti-acetylcholinesterase inhibitory activity of the fruiting body extract at 400 ${mu}g/mg$ exhibited 91.10% on AChE, which is lower than that of positive control, galanthamine (94.82%). The xanthine oxidase inhibitory activities of the fruiting bodies, mycelia, and culture extract were 85.47%, 78.13%, and 72.49% at 400 ${\mu}g/mL$, respectively. Overall, the fruiting body extract has better anti-acetylcholinesterase, antioxidant and xanthine oxidase inhibitory activities than those from mycelia and culture filtrate.

Production of Gluconic Acid by Some Local Fungi

  • Shindia, A.A.;El-Sherbeny, G.A.;El-Esawy, A.E.;Sheriff, Y.M.M.M.
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.22-29
    • /
    • 2006
  • Forty-one fungal species belonging to 15 fungal genera isolated from Egyptian soil and sugar cane waste samples were tested for their capacity of producing acidity and gluconic acid. For the tests, the fungi were grown on glucose substrate and culture filtrates were examined using paper chromatography analysis. Most of the tested fungi have a relative wide potentiality for total acid production in their filtrates. Nearly 51% of them showed their ability of producing gluconic acid. Aspergillus niger was distinguishable from other species by its capacity to produce substantial amounts of gluconic acid when it was cultivated on a selective medium. The optimized cultural conditions for gluconic acid yields were using submerged culture at $30^{\circ}C$ at initial pH 6.0 for 7 days of incubation. Among the various concentrations of substrate used, glucose (14%, w/v) was found to be the most suitable carbon source for maximal gluconic acid during fermentation. Maximum values of fungal biomass (10.02 g/l) and gluconic acid (58.46 g/l) were obtained when the fungus was grown with 1% peptone as sole nitrogen source. Influence of the concentration of some inorganic salts as well as the rate of aeration on the gluconic acid and biomass production is also described.

Bioconversion of Straw into Improved Fodder: Preliminary Treatment of Rice Straw Using Mechanical, Chemical and/or Gamma Irradiation

  • Helal, G.A.
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.14-21
    • /
    • 2006
  • Crude protein (CP) content of mechanically ground rice straw into small particles by an electric grinder and reducing value (RV) and soluble protein (SP) in the culture filtrate were lower than that of the chopped straw into $5{\sim}6\;cm$ lengths when both ground and chopped straws were fermented with Aspergillus ochraceus, A. terreus or Trichoderma koningii, at steady conditions. The reduction rate of RV, SP and CP was 22.2, 2.4, 7.3%; 9.1, 4.9, 8.5% or 0.0, 0.0, 3.6% for the three fungi, respectively. Chemical pretreatment of straw by soaking in $NH_{4}OH$ for a day caused significant increase in CP of the fermented straw than the other alkali and acidic pretreatments. Gamma irradiation pretreatment of dry and wet straw with water, specially at higher doses, 100, 200 or 500 kGy, caused significant increase in RV and SP as CP in the fermented straw by any of these fungi. Chemical-physical combination pretreatment of rice straw reduced the applied dose of gamma irradiation required for increasing fermentable ability of fungi from 500 kGy to 10 kGy with approximately the same results. Significant increases in RV and SP of fermented straw generally occurred as the dose of gamma irradiation for pretreated straw, which combined with $NH_{4}OH$, gradually rose. Whereas, the increase percentage in CP of fermented straw that was pretreated by $NH_{4}OH-10\;kGy$ was 12.4%, 15.4% or 8.6% for A. ochraceus, A. terreus or T. koningii, respectively.

Isolation of Glucose Isomerase Hyperproducing Strain, Streptomyces sp. SM 805 and Its Enzymatic Properties

  • Kim, Hong-Rip
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.78-84
    • /
    • 1992
  • Streptomyces sp. No.8, which produced glucose isomerase was isolated from soil samples. The isolated strain, No.8, was identified as belonging to the Genus Streptomyces. A mutant strain, SM 805, showed the greatest ability to produce glucose isomerase. It was developed from the strain, No.8, by mutagenesis induced by NTG and UV treatment. The mutant strain, SM 805, produced about 7 times more glucose isomerase than the parental strain, No.8. This enzyme catalyzed the isomerization of D-xylose, D-glucose and D-ribose. It was inactive in the absence of metal ions, but was activated by the addition of $Mg^{2+}$ or $Co^{2+}$. The optimum temperature and pH for enzyme activity were $80^\circ{C}$ and pH 8.5, respectively. The enzyme was stable in a pH range of 6.0 to 10.0, and it was highly thermostable. There was no activity loss below $80^\circ{C}$, and even above $90^\circ{C}$ about 45% of its activity was retained. The reaction equilibrium was reached when about 53% fructose was present in the reaction mixture. Whole cells containing glucose isomerase from Streptomyces sp. SM 805 were immobilized by glutaraldehyde treatment. The resultant immobilized enzyme pellets showed a relatively long stability during the isomerizing reaction. The half-life of the immobilized enzyme during the operating was 45 days in the presence of 10mM $Mg^{2+}$.

  • PDF

Cloning and Expression of the Gene Encoding Mannose Enzyme II of the Corynebacterium glutamicum Phosphoenolpyruvate-Dependent Phosphotransferase System in Escherichia coli

  • Lee, Jung-Kee;Sung, Moon-Hee;Yoon, Ki-Hong;Pan, Jae-Gu;Yu, Ju-Hyun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1993
  • The gene for mannose enzyme II of phosphoenolpyruvate-dependent phosphotransferase system from Corynebacterium glutamicum KCTC 1445 was cloned into Escherichia coli ZSC113 using plasmid pBR 322. The recombinant plasmid, designated pCTS3, contained 2.2 kb DNA fragment, and the physical map of the cloned DNA fragment was determined. The E. coli ptsM ptsG mutant transformed with pCTS3 restored glucose and mannose fermentation ability, and grew well on these sugars as the sole carbon source in the minimal medium. The transform ant harboring pCTS3 showed a PTS-mediated repression of growth on maltose by mannose analogue, 2-deoxyglucose. The specificity of the response to 2DG therefore indicates that the cloned DNA fragment carries mannose enzyme II gene.

  • PDF

국내기탁기관의 현황 2

  • 오두환
    • The Microorganisms and Industry
    • /
    • v.15 no.1
    • /
    • pp.38-42
    • /
    • 1989
  • Industrial strain Improvement is concerned with developing or modifying microorga-nisms used In production of commercially important fermentation products. The aim is to reduce the production cost by improving productivity of a strain and manipulating specific cilarafteristic such as the ability to utilize cheaper raw materials or resist bacteriophages. The traditional empiri-cal approach to strain improvement is mutation combined with selection and breeding techniques. It is still used by us to improve the productivity of organisms in amino acids. organic acids andenzymes production. The breeding of high L-lysine-producing strain Au112 is one of the outstanding examples of this approach. It is it homoserine auxotroph with AEC, TA double metabolicanalogue resistant markers. The yield reaches 100g/1. Resides, the citric acid-producing organism Aspergillus nuger, Co827, its productivity reches the advanced level in the world, is also the result of a series mutations expecially with Co Y-radiation. The thermostable a-amylaseroducing strain A 4041 is the third example. By combining physical and chemical multations. the strain ,A 4041becomes an asporogenous, catabolite derepressed mutant with rifamycin resistant and methionine, arginine auxotroph markers. The a-amylase activity reaches 200 units/ml. The fourth successful example of mutation in strain improvement is the glucoamylase-producing strain Aspergillus nigerSP56 its enzyme activity is 20,000 units/ml, 4 times of that of the parental strain UV_11. Recently recombinant DNA approach Provides a worth while alternative strategy to Industrial strain improve-ment. This technique had been used by us to increase the thermostable a-amylase production and on some genetic researches.

  • PDF

Protoplast fusion between saccharomyces cerevisiae and candida cariosilignicola (Saccharomyces cerevisiae와 candida cariosilignicola사이의 세포융합에 관한 연구)

  • 이재동;임하선
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.37-43
    • /
    • 1988
  • This research was focused on investigation of the condition for protoplast formation and regeneration of protoplast fusion between Saccharomyces cerevisiae which has fermentation ability and Candida cariosilignicola which can grow at high temperature and utilize methanol. The results obtained were as follows; The highest production was collected in exponential growth phase. Ninety-nine% protoplast formation of C. cariosilignicola was obtained in glycin-NaOH buffer (pH10.0) containing Zymolyase 0.5mg/ml at $35^{\circ}C$ for 1hr incubation. The highest regeneration was produced when protoplast wuwpension containing 0.5% soft agar in buffered 50mM $CaCl_{2}$ was poured as a soft overlay onto 2% agar plates. Equal amuont of protoplast suspension of two strains was mixed and centrifuged. The subsequent pellet was added to 2ml of 35% polyethylene glycol (MW 4,000) containing 50mM $CaCl_{2}$, and incubated at $30^{\circ}C$ for 10min. Then 0.1ml of the suspension of aggregated protoplast was immediately covered with minimal medium and incubated at $40^{\circ}C$ for 5-7 days. As results, $SC_{1}$, $SC_{2}$, and $SC_{3}$ fusants were obtained. The physiological characteristics of fusants produced by protoplast fusion were; $SC_{1}$, and $SC_{2}$ utilized maltose, galactose, methanol, potassium nitrate. $SC_{3}$ utilized all the above materials except galactose.

  • PDF

Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four Bacillus spp.

  • Jang, Mihyun;Jeong, Do-Won;Heo, Ganghun;Kong, Haram;Kim, Cheong-Tae;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.447-455
    • /
    • 2021
  • Strains of four Bacillus spp. were respectively inoculated into sterilized soybeans and the free amino acid profiles of the resulting cultures were analyzed to discern their metabolic traits. After 30 days of culture, B. licheniformis showed the highest production of serine, threonine, and glutamic acid; B. subtilis exhibited the highest production of alanine, asparagine, glycine, leucine, proline, tryptophan, and lysine. B. velezensis increased the γ-aminobutyric acid (GABA) concentration to >200% of that in the control samples. B. sonorensis produced a somewhat similar amino acid profile with B. licheniformis. Comparative genomic analysis of the four Bacillus strains and the genetic profiles of the produced free amino acids revealed that genes involved in glutamate and arginine metabolism were not common to the four strains. The genes gadA/B (encoding a glutamate decarboxylase), rocE (amino acid permease), and puuD (γ-glutamyl-γ-aminobutyrate hydrolase) determined GABA production, and their presence was species-specific. Taken together, B. licheniformis and B. velezensis were respectively shown to have high potential to increase concentrations of glutamic acid and GABA, while B. subtilis has the ability to increase essential amino acid concentrations in fermented soybean foods.

Biotransformation of Ginsenosides by Eoyukjang-derived Lactic Acid Bacteria in Mountain-cultivated Ginseng

  • Lee, Hyojin;Ahn, Seung Il;Yang, Byung Wook;Park, Jong Dae;Shin, Wang Soo;Ko, Sung Kwon;Hahm, Young Tae
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.201-210
    • /
    • 2019
  • Biotransformation of ginsenosides by microorganisms alters the absorption and bioavailability of ginseng as a medicinal herb. In this study, we isolated two kinds of fermenting microorganisms from Eoyukjang, which is a traditional Korean fermented food made from soybean. Next, we identified and detected their ability to convert major ginsenosides to compound K. The two microorganisms, referred to as R2-6 and R2-15, had 100% similarity with Lactobacillus plantarum subsp. plantarum ATCC $14917^T$ and Lactobacillus rhamnosus JCM $1136^T$, respectively. The optimal pH and growth temperature of the isolates were determined to be pH 6-7 and $30^{\circ}C$. After fermentation for 30 days, the major ginsenosides in the mountain-cultivated ginseng were transformed to the highly bioactive ginsenoside, compound K, in the final product.