• Title/Summary/Keyword: femA

Search Result 5,785, Processing Time 0.036 seconds

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

Distribution of Natural Frequency of 2-DOF Approximate Model of Stay Cable to Reduction of Area (단면감소에 따른 사장케이블의 2-자유도 근사모델의 고유진동수 분포)

  • Joe, Yang-Hee;Lee, Hyun-Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.147-154
    • /
    • 2014
  • The cable damages of the bridge structures induce very important impact on the structural safety, which implies the close monitoring of the cable damage is required to secure sustained safety of the bridges. Most usual available maintenance techniques are based on the monitoring the change of the natural frequency of the structures by damages. However, existing method are based on vibration method to calculate lateral vibration and system identification can calculate the axial stiffness using sensitivity equation by trial error method. But the frequency study by the longitudinal movement need because of the sag effect in system identification. This study proposes a new method to investigate the damage magnitudes and status. The method improves the accuracies in the magnitudes and status of damages by adopting the natural frequency of longitudinal movement. The study results have been validated by comparing them with the approximate solution of FEM. Thus, the relationship of cable damage and frequency appear with relation that the severe damage has the little frequency. If we know the real frequency we can estimate the cable damage severity using this relationship. This method can be possible the efficient management of the cable damage.

Numerical Analysis of Dynamic Response of Floating Offshore Wind Turbine to the Underwater Explosion using the PML Non-reflecting Technique (PML 무반사 기법을 이용한 부유식 해상풍력발전기의 수중폭발에 따른 동응답 수치해석)

  • Cho, Jin-Rae;Jeon, Soo-Hong;Jeong, Weui-Bong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.521-527
    • /
    • 2016
  • This paper is concerned with the numerical analysis of dynamic response of floating offshore wind turbine subject to underwater explosion using an effective non-reflecting technique. An infinite sea water domain was truncated into a finite domain, and the non-reflecting technique called the perfectly matched layer(PML) was applied to the boundary of truncated finite domain to absorb the inherent reflection of out-going impact wave at the boundary. The generalized transport equations that govern the inviscid compressible water flow was split into three PML equations by introducing the direction-wise absorption coefficients and state variables. The fluid-structure interaction problem that is composed of the wind turbine and the sea water flow was solved by the iterative coupled Eulerian FVM and Largangian FEM. And, the explosion-induced hydrodynamic pressure was calculated by JWL(Jones-Wilkins-Lee) equation of state. Through the numerical experiment, the hydrodynamic pressure and the structural dynamic response were investigated. It has been confirmed that the case using PML technique provides more reliable numerical results than the case without using PML technique.

Stress Distribution in Microvascular Anastomotic Coupler (AnaFix®) Micropins with Respect to the Fillet Radius (필렛효과에 따른 미세혈관 문합커플러(AnaFix®) 마이크로핀의 응력분포)

  • Jee, Dae-Won;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1139-1145
    • /
    • 2011
  • An automated anastomotic ring-pin system consisting of both the anastomotic ring-pin system and the coupler device has eliminated the drawbacks of the suture method. High density polyethylene (HDPE), a material with outstanding biocompatibility and injection molding capability, was used in the ring. SUS316 stainless steel, Ti-6Al-4Nb, Ti-6Al-4V, and unalloyed titanium were used in FEM simulations of the micropin. The authors categorized the microvascular anastomotic ring micropins into short neck (SN) and long neck (LN) groups in order to evaluate the effect of the micropin's fillet radius and neck length on the von Mises stress. The micropins were further divided into those with and without fillet. On the basis of the fillet radius rate (FRR), which represents the rate of change in the von Mises stress with respect to the availability and shape of the fillet, and the neck length rate (NLR), which represents the rate of change in the von Mises stress with respect to changes in the length of the neck within the fillet shape, it can be concluded that the SN-3 neck design is the most stable.

Fabrication of Piezoresistive Silicon Acceleration Sensor Using Selectively Porous Silicon Etching Method (선택적인 다공질 실리콘 에칭법을 이용한 압저항형 실리콘 가속도센서의 제조)

  • Sim, Jun-Hwan;Kim, Dong-Ki;Cho, Chan-Seob;Tae, Heung-Sik;Hahm, Sung-Ho;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.21-29
    • /
    • 1996
  • A piezoresistive silicon acceleration sensor with 8 beams, utilized by an unique silicon micromachining technique using porous silicon etching method which was fabricated on the selectively diffused (111)-oriented $n/n^{+}/n$ silicon subtrates. The width, length, and thickness of the beam was $100\;{\mu}m$, $500\;{\mu}m$, and $7\;{\mu}m$, respectively, and the diameter of the mass paddle (the region suspended by the eight beams) was 1.4 mm. The seismic mass on the mass paddle was formed about 2 mg so as to measure accelerations of the range of 50g for automotive applications. For the formation of the mass, the solder mass was loaded on the mass paddle by dispensing Pb/Sn/Ag solder paste. After the solder paste is deposited, Heat treatment was carried out on the 3-zone reflow equipment. The decay time of the output signal to impulse excitation of the fabricated sensor was observed for approximately 30 ms. The sensitivity measured through summing circuit was 2.9 mV/g and the nonlinearity of the sensor was less than 2% of the full scale output. The output deviation of each bridge was ${\pm}4%$. The cross-axis sensitivity was within 4% and the resonant frequency was found to be 2.15 KHz from the FEM simulation results.

  • PDF

Spacing of Intermediate Diaphragms Horizontally Curved Steel Box Girder Bridges considering Bending-distortional Warping Normal Stress Ratio (곡선 강박스 거더의 휨-뒤틀림 응력비에 따른 중간 다이아프램 간격)

  • Lee, Jeong-Hwa;Lee, Kee-Sei;Lim, Jeong-Hyun;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6325-6332
    • /
    • 2015
  • Although distortions of horizontally curved box girder are more susceptible than which of the straight girder due to curvature effect, current domestic design standards does not present spacing of intermediate diaphragms for the curved box girder. In this study, parametric studies for straight and curved box girder considering distortional warping normal stresses based on linear finite element analysis were carried out. Single span curved girders were chosen for analysis based on current domestic bridge data with 1-6 of solid intermediate diaphragms, 0-30 degree of subtended angle, 30m and 60m of span length and 2-3m of flange width and web height. The adequate spacing of diaphragms for the box girder were suggested considering subtended angles and bending and distortional warping normal stress ratios with 5%, 10%, 15% and 20%. The analysis results were also compared to a current design standard and suggested spacing of diaphragm were evaluated.

A Numerical Analysis on the Diaphragm and Cutout Structures for Improvement of Structure Performance in Orthotropic Steel Decks (강바닥판 구조성능 개선을 위한 보강재 설치에 관한 매개변수해석)

  • Shin, Jae-Choul;An, Ju-Og
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2009
  • Transverse rib web of orthotropic steel decks is highly susceptible to stress concentration due to out-of-plane and oil canning deformation caused by longitudinal rib distortion. In particular, stress concentrations are observed in the crossing point of longitudinal rib-transverse rib-deck plate, and cutout parts of transverse rib. The main objective of this study is to improve structure performance and to reduce the stress concentration of aforementioned susceptible parts. It is known that the installation of diaphragm alleviates stress concentrations between crossing point ant cutout. The influence of transverse rib placement and cutout width on stress concentrations was thoroughly investigated through numerical analyses. The numerical result showed that diaphragms produce the structural details for improved structure performance, when the transverse rib was placed in the same location with diaphragms. In any case, it is certain that the installation of diaphragms has more advantageous than the case without diaphragms in terms of structure performance of orthotropic steel decks. In this study, the distance ratio($y_i/y_{total}$) is defined as the ratio of the distance($y_{total}$) between the deck plate and longitudinal rib bottom to the distance($y_i$) between the deck plate and crossing point of longitudinal rib-transverse rib in cutout part. It has been found that the optimal distance ratio was 0.85 from the numerical simulation.

Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly (유연 반도체 패키지 접속을 위한 폴리머 탄성범프 범핑 공정 개발 및 범프 변형 거동 분석)

  • Lee, Jae Hak;Song, Jun-Yeob;Kim, Seung Man;Kim, Yong Jin;Park, Ah-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.31-43
    • /
    • 2019
  • In this study, polymer elastic bumps were fabricated for the flexible electronic package flip chip bonding and the viscoelastic and viscoplastic behavior of the polymer elastic bumps according to the temperature and load were analyzed using FEM and experiments. The polymer elastic bump is easy to deform by the bonding load, and it is confirmed that the bump height flatness problem is easily compensated and the stress concentration on thin chip is reduced remarkably. We also develop a spiral cap type and spoke cap type polymer elastic bump of $200{\mu}m$ diameter to complement Au metal cap crack phenomenon caused by excessive deformation of polymer elastic bump. The proposed polymer elastic bumps could reduce stress of metal wiring during bump deformation compared to metal cap bump, which is completely covered with metal wiring because the metal wiring on these bumps is partially patterned and easily deformable pattern. The spoke cap bump shows the lowest stress concentration in the metal wiring while maintaining the low contact resistance because the contact area between bump and pad was wider than that of the spiral cap bump.

Predictive Equation of Dynamic Modulus for Hot Mix Asphalt with Granite Aggregates (화강암 골재를 이용한 아스팔트 혼합물의 동탄성 계수 예측방정식)

  • Lee, Kwan-Ho;Kim, Hyun-O;Jang, Min-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.425-433
    • /
    • 2006
  • The presented work provided a predictive equation for dynamic modulus of hot mix asphalt, which showed higher reliability and more simplicity. Lots of test result by UTM at laboratory has been used to develop the precise predictive equation. Evaluation of dynamic modulus for 13mm and 19mm surface course and 25mm of base course of hot mix asphalt with granite aggregate and two asphalt binders (AP-3 and AP-5) were carried out. Superpave Level 1 Mix Design with gyrator compactor was adopted to determine the optimum asphalt binder content (OAC) and the measured ranges of OAC were between 5.1% and 5.4% for surface HMA, and around 4.2% for base HMA. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature (-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies (0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The effect of each parameter for equation has been compared. Due to the limitation of laboratory tests, the reliability of predictive equation for dynamic modulus is around 80%.

A THREE-DIMENSIONAL FEM COMPARISON STUDY ABOUT THE FORCE, DISPLACEMENT AND INITIAL STRESS DISTRIBUTION ON THE MAXILLARY FIRST MOLARS BY THE APPLICATION OF VAR10US ASYMMETRIC HEAD-GEAR (비대칭 헤드기어의 적용시 상악제 1 대구치에 나타나는힘과 변위 및 초기 응력분포에 관한 3차원 유한요소법적 연구)

  • Kim, Jong-Soo;Cha, Dyung-Suk;Ju, Jin-Won;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.25-38
    • /
    • 2001
  • The purpose of this study was to compare the force, the displacement and the stress distribution on the maxillary first molars altered by the application of various asymmetric head-gear. For this study, the finite element models of unilateral Cl II maxillary dental arch was made. Also, the finite element models of asymmetric face-bow was made. Three types of asymmetric face-bow were made : each of the right side 15mm, 25mm and 35mm shorter than the left side. We compared the forces, the displacement and the distribution of stress that were generated by application of various asymmetric head-gear, The results were as follows. 1. The total forces that both maxillary first molars received were similar in all groups. But the forces that mesially positioned tooth received were increased as the length of the outer-bow shortened, and the forces that normally positioned tooth received were decreased as the length of the outer-bow shortened. 2. In lateral force comparison, the buccal forces that normally positioned tooth received were increased as the length of the outer-bow shortened, and the buccal fortes that mesially positioned tooth received were decreased as the length of the outer-bow shortened. Though the net lateral force moved to the buccal side of normally positioned tooth as the length of the outer-bow shortened, both maxillary first molars received the buccal force. That showed 'Avchiai Expansion Effect' 3. The distal forces, the extrusion forces and the magnitudes of the crown distal tipping that mesially positioned tooth received were increased as the length of the outer-bow shortened, and the forces that normally positioned tooth received were decreased as the length of the outer-bow was shortened. 4. The magnitude of the distal-in rotation that normally positioned tooth received were increased as the length of the outer-bow was shortened. But, mesially positioned tooth show two different results. For the outer-bow 15mm shortened, mesially positioned tooth showed the distal-in rotation, hut for the outer-bow 25mm and 35mn shortened, mesially positioned tooth showed the distal-out rotation. Thus, the turning point exists between 15mm and 25mm. 5. This study of the initial stress distribution of the periodontal ligament at slightly inferior of the furcation area revealed that the compressive stress in the distobuccal root of the normally positioned tooth moved from the palatal side to the distal side and the buccal side successively as the length of the outer-bow shortened. 6. This study of the initial stress distribution of the periodontal ligament at slightly inferior of the furcation area revealed that the magnitudes of stress were altered but the total stress distributions were not altered in the mesiobuccal root and the palatal root of normally positioned tooth, and also three roots of mesially positioned tooth as the length of the outer-bow shortened.

  • PDF