• Title/Summary/Keyword: feeding ecology

Search Result 315, Processing Time 0.021 seconds

Effects of Dissolved Oxygen and Depth on the Survival and Filtering Rate and Pseudofeces Production of a Filter-feeding Bivalve (Unio douglasiae) in the Cyanobacterial Bloom (남조류 대발생 환경에서 수심과 용존산소 변화에 따른 담수산 이매패(말조개)의 생존율, 여과율 및 배설물 생산)

  • Park, Ku-Sung;Kim, Baik-Ho;Um, Han-Yong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.50-60
    • /
    • 2008
  • We performed the experiment to evaluate the effect of different DO concentrations (0.5, 4.5 and 9.0 $mgO_2L^{-1}$) and water depths (20, 50 and 80 cm) on the filtering rate, mortality, and pseudifeces production of Unio douglasiae against the cyanobacterial bloom (mainly Microcystis aeruginosa). A solitary-living bivalve U. douglasiae was collected in the upstream region of the North Han River (Korea). The harvested mussels were carefully transferred to the laboratory artificial management system, which was controlled temperature $(18{\pm}2^{\circ}C)$, flow rate (10L $h^{-1}$), food $(Chlorella^{TM})$, sediment (pebble and clay), light intensity (ca. $20{\mu}mol$ photons), and photocycle (12 L : 12 D). In the field observation, the mussel mortality was significantly correlated with water temperature, pH and DO concentration (P<0.05). The mortality was decreased with water depth; 65, 90, 80% of mortality at 20, 50, 80 cm water-depth, respectively. Filtering rate (FR) showed the highest value at 50 cm water depth, and thereby the concentration of chlorophyll-${\alpha}$ decreased continuously by 94% of the control at the end of the experiment. In contrast, FR decreased by 34% of the initial concentration at 20 cm water depth. Over the given water-depth range, the mussel FR ranged from $0.15{\sim}0.20L\;gAFDW^{-1}hr^{-1}$ during the 18hrs of experiment, and thereafter, they appeared to be approximately 0.11, 0.26 and 0.30 L $gAFDW^{-1}hr^{-1}$ at 20, 50 and 80cm water depth, respectively. FR was highest with the value of 0.46L $gAFDW^{-1}hr^{-1}\;at\;0.5mgO_2 L^{-1}$ at the early stage of the experiment, while it increased with DO concentration. Maximum pseudofaeces production was 11.2 mg $gAFDW^{-1}hr^{-1}\;at\;9.0mgO_2L^{-1}$. Our results conclude that U. douglasiae has a potential to enhance water quality in eutrophic lake by removing dominant cyanobacteria, but their effects vary with environmental parameters and the water depth at which they are located.

Removal Effects of Chlorophyll-a and Cyanobacteria Using Laboratory-scale Biomanipulation Tests (실험적 생물조절 기법을 이용한 엽록소 및 남조류 제거 효과)

  • Lee, Sang-Jae;Lee, Jae-Yon;Lee, Jae-Hoon;Bae, Dae-Yeul;Lee, Eui-Hang;Han, Jung-Ho;Hwang, Soon-Jin;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.86-92
    • /
    • 2008
  • This study was conducted to determine removal effect on phytoplankton (chlorophyll-${\alpha}$ as whole algae) and cyanobacteria by a fish Pseudorasbora parva and macroinvertebrate Palaemon paucidens in September 2006. Three treatments with 25 (T1), 50 (T2) and 100 (T3) individuals along with control (C1, no input fish), and two treatments with 25 (T4) and 50 (T5) individuals along with control (C1) were made for fish and macroinvertebrate, respectively. The initial concentrations of chlorophyll-${\alpha}$ $(Chl_i)$ in each 10L test tank were set up for the levels of $95{\sim}100{\mu}g\;L^{-1}$ and the daily values were monitored in the test tank during 7 days. In the lab tests, P. parva did not show Chl-${alpha}$ removal effect; the removal rate of Chl-${alpha}$ for P. parva was -58% in T1, -56% in T2, and 61% in T3 during the test period. In contrast, P. paucidens. in the treatments of T4 and T5 removed the phytoplankton effectively and the removal effect were appeared to be 33% and 22%, respectively. Also, P. paucidens showed high feeding efficiency in the removal of cyanobacteria. The levels of cyanobacteria were greatly lowed from 6,048 to 927 cells $mL^{-1}$ in T4 and from 6,539 to 1,053 cells $mL^{-1}$ in T5, resulting in 85% and 84% in the removal effect, respectively. Our results for biomanipulation tests suggest that P. paucidens may be used as a potential candidate organism for algae control in spite of the preliminary results by laboratory tests.

Grazing Effects of Freshwater Bivalve Unio douglasiae on the Hibernal Diatom Bloom in the Eutrophic Lake and Stream (저온기 부영양 수계의 규조 발생에 대한 말조개의 섭식특성)

  • Lee, Song-Hee;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • Filtration rates and fecal production of freshwater bivalve, Unio douglasiae on two kinds of hibernal diatom communities were measured simultaneously in a laboratory. One community is the Han River (HAN), which dominated by Asterionella Formosa. Stephanodiscus hantzschii (ca. 98% of total phytoplankton). The other community is the Ilgam Lake (IL), which dominated by Synedra ulna, Scenedesmus sp. Microcystis aeruginosa (ca. 82%). The HAN water has higher concentrations of nutrient (TN and TP) and chlorophyll $\alpha$ (Chl-$\alpha$), lower turbidity and conductivity than the IL water. Water sampling for the feeding experiment was conducted in the same day (Jan 15, 2008) and similar time (AM 10:00 for HAN, AM 11:00 for IL). Mussels with the similar size ($0.0{\pm}0.5\;cm$) were collected from the Gunsan and Okgu district (Jeonbuk), and starved in a laboratory for 2 days before the experiment. The experiment comprised CON (no addition of mussel), LOW (addition of mussel at 0.3 indiv. $L^{-1}$), MID (1.0 indiv. $L^{-1}$) and HIGH (2.0 indiv. $L^{-1}$), respectively. With the increment of mussel density and time, the concentration of Chl-$\alpha$ in two diatom communities were clearly decreased; Chl-$\alpha$ of HAN gradually decreased after 1 hour of mussel treatment, while that of IL decreased as soon as mussel introduction. In 7 hours of treatment, the former was removed finally up to about 90% of control, while the later was remained as about 50%. Under the presence of mussel, total phytoplankton density was shifted as the similar patterns to that of Chl-$\alpha$ (r=0.705, P<0.0001), however, there showed the drastic differences following a species. Based on the concentration of Chl-$\alpha$, filtration rate of U. douglasiae averaged 0.266 $L\;g^{-1}\;h^{-1}$ (0.115 to 0.442) on HAN and $0.577\;L\;g^{-1}\;h^{-1}$ (0.146 to 1.428) on IL water, respectively. There were no differences in feces production among the mussel density in the HAH water (ANOVA, P>0.5), while in IL water, including lots of seston, the HIGH mussel produced the higher fecal materials, over one hundred times of LOW. These results suggest that freshwater bivalve Unio douglasiae have the alternative potential, as a filter-feeder of seston in turbid lake, and a biological controller of diatom bloom in cold stream.

Impacts of Impoundments by Low-head and Large Dams on Benthic Macroinvertebrate Communities in Korean Streams and Rivers (소형 보와 대형 댐에 의해 형성된 저수역이 저서성 대형무척추동물 군집에 미치는 영향)

  • Kil, Hye-Kyung;Kim, Dong-Gun;Jung, Sang-Woo;Jin, Young-Hun;Hwang, Jeong-Mi;Bae, Kyung-Seok;Bae, Yeon-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.190-198
    • /
    • 2010
  • This study was conducted to examine the effects of dams on benthic macroinvertebrate communities in Korean streams and rivers. Four low-head dams and three large dams were studied throughout South Korea. Sampling was taken at immediately upper (impoundment), lower (riffle area), and control (riffle area) sites from the dams during 2004-2007. The upper sites, of which substrate heterogeneity and velocity were relatively low, showed a lower degree of species richness, density, and diversity indices, which is very different from the lower and control sites. Heavily polluted streams showed a lesser degree of community differences between the upper and lower sites. In the large dams, the upper and lower sites showed very low values of species diversity indices and very high values of dominance indices compared to the control sites. In the low-head dams, however, the difference of degree of the values was relatively smaller. Compositions of the functional feeding groups and the habitat orientation groups were relatively simpler at the upper sites than at the lower sites and the degree of difference was greater in the large dams. Species richness and community indices of benthic macroinvertebrates were more significantly affected by habitat characteristics than water quality at the upper sites; however, those were more significantly related with water quality at the lower sites. In conclusion, large and low-head dams could simplify stream habitats particularly at the upper sites (impoundment), and they negatively affected on the benthic macroinvertebrate communities inhabited the habitats. The impact was larger in the large dams than in the low-head dams.

Microcystins Concentration in Fishes Collected from the Weirs of Four Rivers in Korea and Risk Assessment (국내 4대강 보에서 채집된 어류 조직에서 microcystins 농도 분석 및 위해도 평가)

  • Do-Hwan Kim;Yuna Shin;Min Jeong Park;Young-Cheol Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.120-131
    • /
    • 2022
  • Microcystins (MCs) are cyano-toxins mainly produced by cyanobacteria in the genera of Microcystis, Anabaena, and Oscillatoria. The concentrations of MCs in the water bodies and fish tissues taken from the four weirs (Ipo, Gangjeong-goryeong, Baekje, and Juksan) in the four main rivers in Korea, and the health risk of human due to consumption of toxin-detected fish was examined. The maximum values of MCs concentration in the water samples were as follows: Juksan (3.261 ㎍ L-1), Gangjeong-goryeong (1.014 ㎍ L-1), Baekje (0.759 ㎍ L-1), and Ipo (0.266 ㎍ L-1) weirs. The MC-RR concentration was the highest among the MCs, and MC-YR was not detected. MCs of 0.222~9.808 ㎍ g-1 dry weight were detected in the liver of 3 out of 215 fishes of 16 species, and below the detection limit in muscle. As a result of comparing the feeding characteristics of the collected fishes and toxin concentrations in water and fish tissue, it was concluded that the biomagnification of MCs through the food chain did not occur. It was judged that there was no health risk due to the consumption of the fish detected the toxin, based on the amount of the fish intake of the Korean people and the allowable daily intake of MCs. However, in order to reduce the health risk due to MCs, further studies should be conducted to analyze the concentration of MCs contained in fish tissues collected at various times in the area dominated by harmful cyanobacteria to obtain data on the exposure of MCs due to fish consumption. In addition, it is necessary to establish the management guidelines for MCs in fish tissues.