• Title/Summary/Keyword: feedback equivalence

Search Result 20, Processing Time 0.04 seconds

A Study on the Optimum Design using Finite Element Analysis and Automatic Design of Lachet Wheel (라체트 휠의 자동설계와 유한요소해석을 이용한 최적화에 관한 연구)

  • 박진형;이승수;김민주;김태호;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.3-8
    • /
    • 2001
  • This study is an investigation for the ADS optimum design by using FEA. We write out program which express ADS perfectly and reduce the required time for correcting of model to the minimum in solution and manufacture result. We complete algorithm which can plan optimum forming of model by feedback error information in CAE. Then we correct model by feedback date obtaining in solution process, repeat course following stress solution again and do modeling rachet wheel for optimum forming. That is our aim. In rachet wheel, greatest equivalence stress originates in key groove corner and KS standard is proved the design for security.

  • PDF

A Study on the Selection of Optimum Auto-design Data using FEA (유한요소해석을 이용한 최적자동설계 데이터 선정에 관한 연구)

  • 박진형;이승수;김민주;김순경;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.406-409
    • /
    • 2001
  • This study is an investigation for the ADS optimum design by using FEA. We write out program which express ADS perfectly and reduce the required time for correcting of model to the minimum in solution and manufacture result. We complete algorithm which can plan optimum forming of model by feedback error information in CAE. Then we correct model by feedback date obtaining in solution process, repeat course following stress solution again and do modeling rachet wheel for optimum forming. That is our aim. In rachet wheel, greatest equivalence stress originates in key groove corner and KS standard is proved the design for security.

  • PDF

A Study on the Optimum Design Using FEM and ADS (FEM과 ADS를 이용한 최적설계에 관한 연구)

  • Kim, M.J.;Lee, S.S.;Park, J.H.;Kim, S.M.;Jeon, E.C.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.146-151
    • /
    • 2001
  • This study is an investigation for the ADS optimum design by using FEM. We write out program which express ADS perfectly and reduce the required time for correcting of model to the minimum in solution and manufacture result. We complete algorithm which can plan optimum forming of model by feedback error information in CAE. For that, we draw up ADS program which modeling rachet wheel by using visual LISP and telegraph to ANSYS, structural solution program, we can solve stress solution. Then we correct model by feedback date obtaining in solution process, repeat course following stress solution again and do modeling rachet wheel for optimum forming. That is our aim. As a result of experience, we can develope automatic design program using Visual LISP and exhibit ADS as modeling third dimension CAD for optimum design. Also, we develop optimum design algorithm using ADS and FEM. In rachet wheel, greatest equivalence stress originates in key groove comer and KS standard is proved the design for security.

  • PDF

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.

Effects of Catalytic Reaction and Natural Convection on the Hot Surface Ignition of Methane-Air Mixtures (메탄-공기 예혼합기의 열면점화에 미치는 촉매반응 및 자연대류의 영향)

  • Kim, H.M.;Jurng, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.29-38
    • /
    • 1997
  • In this study, the experimental and numerical investigations of the ignition of methane-air mixtures by a electrically heated wire have been carried out. In order to define the initial condition and make the analysis simple, the following control unit was developed; which heats the wire to the setting temperature in a very short time, and maintains the wire temperature constant until ignition. Experiments with the feedback control have been performed using nickel and platinum wires in normal gravity and microgravity. From experimental results, ignition temperatures in normal gravity are higher than those in microgravity, however, the dependences of ignition temperature on equivalence ratio are not affected by natural convection. Numerical calculations, including catalytic reaction for platinum, have been performed to analyze the experimental results in microgravity. Numerical results show that reactants near platinum wire are consumed by catalytic reaction, therefore, the higher temperature is needed to ignite the mixture with platinum wire.

  • PDF

Robust pole assignment of proportional integral control system

  • Kim, Hwan-Seong;Ogasawara, Kenichi;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.373-378
    • /
    • 1994
  • This paper is concerned with assess the possibility of robust pole assignment of proportional integral(PI) state feedback control system. First, the equivalence relations between a PI control system and an argumented control system proposed by Kawaji and Kim(1994) are extended from the new points of views of invariant closed loop poles. Second, on the relations, a remarkable result that the integral gain of PI control system is directly related to the insensitivity of system is presented. And, it is shown that the design of robust PI pole assignment is possible under the certain conditions.

  • PDF

A Study on the Verification Using Finite Element Analysis and Automatic Design of Ratchet Wheel (래칫 휠의 자동설계와 유한요소해석을 이용한 검증에 관한 연구)

  • 김민주;이승수;전언찬
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.45-50
    • /
    • 2002
  • This study is an investigation far the Am optimum design using FEA. We write out program which express ADS perfectly and reduce the required time far correcting of model to the minion in solution md manufacture result. We complete algorithm which can plan optimum forming of model by feedback error information in CAE. Then we contract model by feedbback date obtaining in solution process, repeat course following stress solution again iud do modeling rachet wheel for optimum forming. That is our aim. In cachet wheel, greatest equivalence strss originates in key groove comer and KS standard is proved the design far security.

POINTWISE CROSS-SECTION-BASED ON-THE-FLY RESONANCE INTERFERENCE TREATMENT WITH INTERMEDIATE RESONANCE APPROXIMATION

  • BACHA, MEER;JOO, HAN GYU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.791-803
    • /
    • 2015
  • The effective cross sections (XSs) in the direct whole core calculation code nTRACER are evaluated by the equivalence theory-based resonance-integral-table method using the WIMS-based library as an alternative to the subgroup method. The background XSs, as well as the Dancoff correction factors, were evaluated by the enhanced neutron-current method. A method, with pointwise microscopic XSs on a union-lethargy grid, was used for the generation of resonance-interference factors (RIFs) for mixed resonant absorbers. This method was modified by the intermediate-resonance approximation by replacing the potential XSs for the non-absorbing moderator nuclides with the background XSs and neglecting the resonance-elastic scattering. The resonance-escape probability was implemented to incorporate the energy self-shielding effect in the spectrum. The XSs were improved using the proposed method as compared to the narrow resonance infinite massbased method. The RIFs were improved by 1% in $^{235}U$, 7% in $^{239}Pu$, and >2% in $^{240}Pu$. To account for thermal feedback, a new feature was incorporated with the interpolation of pre-generated RIFs at the multigroup level and the results compared with the conventional resonance-interference model. This method provided adequate results in terms of XSs and k-eff. The results were verified first by the comparison of RIFs with the exact RIFs, and then comparing the XSs with the McCARD calculations for the homogeneous configurations, with burned fuel containing a mixture of resonant nuclides at different burnups and temperatures. The RIFs and XSs for the mixture showed good agreement, which verified the accuracy of the RIF evaluation using the proposed method. The method was then verified by comparing the XSs for the virtual environment for reactor applicationbenchmark pin-cell problem, as well as the heterogeneous pin cell containing burned fuel with McCARD. The method works well for homogeneous, as well as heterogeneous configurations.

Alleviating Semantic Term Mismatches in Korean Information Retrieval (한국어 정보 검색에서 의미적 용어 불일치 완화 방안)

  • Yun, Bo-Hyun;Park, Sung-Jin;Kang, Hyun-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3874-3884
    • /
    • 2000
  • An information retrieval system has to retrieve all and only documents which are relevant to a user query, even if index terms and query terms are not matched exactly. However, term mismatches between index terms and qucry terms have been a serious obstacle to the enhancement of retrieval performance. In this paper, we discuss automatic term normalization between words in text corpora and their application to a Korean information retrieval system. We perform two types of term normalizations to alleviate semantic term mismatches: equivalence class and co-occurrence cluster. First, transliterations, spelling errors, and synonyms are normalized into equivalence classes bv using contextual similarity. Second, context-based terms are normalized by using a combination of mutual information and word context to establish word similarities. Next, unsupervised clustering is done by using K-means algorithm and co-occurrence clusters are identified. In this paper, these normalized term products are used in the query expansion to alleviate semantic tem1 mismatches. In other words, we utilize two kinds of tcrm normalizations, equivalence class and co-occurrence cluster, to expand user's queries with new tcrms, in an attempt to make user's queries more comprehensive (adding transliterations) or more specific (adding spc'Cializationsl. For query expansion, we employ two complementary methods: term suggestion and term relevance feedback. The experimental results show that our proposed system can alleviatl' semantic term mismatches and can also provide the appropriate similarity measurements. As a result, we know that our system can improve the rctrieval efficiency of the information retrieval system.

  • PDF

The Premixed Flame in a Radiatively Active Porous Medium (복사열전달을 동반하는 다공성 매질내의 예혼합 화염)

  • 김정수;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.265-270
    • /
    • 1989
  • The present study considers the thermal structure variation in a porous medium caused by changing the most important radiative property of porous medium, absorption coefficient, as well as altering the physical dimension of porous medium and the equivalence ratio of premixed gas mixture. The radiation model was introduced as an unsteady differential form using the two-flux gray radiation model. The role of the conductive heat transfer through both gas phase and porous medium was found to be almost insignificant compared with that of the radiative heat transfer. The reaction zone shifted upstream and the flame thickness decreased as either the geometrical length of porous medium increased or the absorption coefficient decreased.