• Title/Summary/Keyword: feedback control law

Search Result 318, Processing Time 0.025 seconds

Design of Two-DOF Optimal Controller for Strip Gage and Tension Control of Cold Tandem Mills Using Reference Shaping Filter and Disturbance Observer (목표치 정형화 및 외란 관측기를 활용한 연속 냉간압연 시스템의 2-자유도 스트립 두께 및 장력 최적 제어기 설계)

  • Hong, Wan-Kee;Kang, Hyun-Seok;Hwang, I-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.237-244
    • /
    • 2012
  • This paper studies the design of a two-DOF optimal controller for the strip gauge-tension of cold tandem mill processes, that uses a reference shaping filter and a disturbance observer. First, a mathematical model of the strip gauge and tension system is constructed using the gauge meter equation and Hooke's law, respectively. Next, a two-DOF controller considering of a feedforward controller and a feedback controller is designed. The former is based on the reference shaping filter and the disturbance observer, and the latter is based on the ILQ optimal control algorithm. Finally, it is shown through a computer simulation that the proposed optimal controller is able to improve the strip gauge accuracy and the tension variation more than the conventional MV-AGC controller.

Guaranteed Cost Control for Discrete-time Linear Uncertain Systems with Time-varying Delay (시변 시간지연을 가지는 이산 선형 불확실성 시스템에 대한 보장 비용 제어)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Lee, Sang-Kyung;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.20-26
    • /
    • 2002
  • This paper deals with the guaranteed cost control problems for a class of discrete-time linear uncertain systems with time-varying delay. The uncertain systems under consideration depend on time-varying norm-bounded parameter uncertainties. We address the existence condition and the design method of the memoryless state feedback control law such that the closed loop system not only is quadratically stable but also guarantees an adequate level of performance for all admissible uncertainties. Through some changes of variables and Schur complement, It is shown that the sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Design of an OPtimal Controller for the Nonlinear Robot Manipulators with the Actuator Dynamics (조작기의 동특성을 고려한 비선형 로봇 매니퓰레이터의 최적 제어기 설계)

  • 김학범;이양범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1376-1385
    • /
    • 1993
  • This paper presents a new dynamic model which is represented by the second order differenatial equation and itcludes the robot arm dynamics as well as the actuator dynamics. The model exhibits excellent performance in the steady state and transient response. In addition the time varing nonlinear and coupled dynamic system has been linearized and decoupled by using nonlinear feedback and linearization method. In this case a pole assignment law is used to improve stability, and the optimal control altorithm is applied to the error equation to minimize the path error. In applying the proposed algorithm to the three joint manipulator with actuators, we obtained very encouraging results.

  • PDF

Improvement of Unexpected Pitch Down Tendency of an Aircraft (항공기 기수 숙임 현상 개선)

  • Kim, Chong-Sup;Kwon, Hui-Man;Koh, Gi-Ok;Han, Kwang-Ho;Lee, Seung-Deok;Hwang, Byung-Moon;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.162-169
    • /
    • 2011
  • The flight control system utilize RSS(Relaxed Static Stability) criteria in both longitudinal axes to achieve performance enhancements and improve stability. The aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as pitch, roll and yaw rate, normal acceleration from RSA(Rate Sensor Assembly) and ASA(Acceleration Sensor Assembly). These sensors has permissible measurement error related to system safety of an aircraft but, unexpected flight motions are happened by sensing errors such as offset, noise and etc. The unexpected pitch down tendency occurred by ASA sensor bias in 1g level flight with pilot hands-off. This paper addresses the design and verification of flight control law to improve of pitch down or up tendency caused by ASA sensor bias. The result of analysis and flight test reveals that pitch down tendency can be improved by pitch attitude feedback system.

A Study on Applying Guidance Laws in Developing Algorithm which Enables Robot Arm to Trace 3D Coordinates Derived from Brain Signal (로봇 팔의 뇌 신호로부터 유도된 3D 좌표 추적을 위한 Guidance Law 적용에 관한 연구)

  • Kim, Y.J.;Park, S.W.;Kim, W.S.;Yeom, H.G.;Seo, H.G.;Lee, Y.W.;Bang, M.S.;Chung, C.K.;Oh, B.M.;Kim, J.S.;Kim, Y.;Kim, S.
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.50-54
    • /
    • 2014
  • It is being tried to control robot arm using brain signal in the field of brain-machine interface (BMI). This study is focused on applying guidance laws for efficient robot arm control using 3D coordinates obtained from Magnetoencephalography (MEG) signal which represents movement of upper limb. The 3D coordinates obtained from brain signal is inappropriate to be used directly because of the spatial difference between human upper limb and robot arm's end-effector. The spatial difference makes the robot arm to be controlled from a third-person point of view with assist of visual feedback. To resolve this inconvenience, guidance laws which are frequently used for tactical ballistic missile are applied. It could be applied for the users to control robot arm from a first-person point of view which is expected to be more comfortable. The algorithm which enables robot arm to trace MEG signal is provided in this study. The algorithm is simulated and applied to 6-DOF robot arm for verification. The result was satisfactory and demonstrated a possibility in decreasing the training period and increasing the rate of success for certain tasks such as gripping object.

The Development of Interactive Ski-Simulation Motion Recognition System by Physics-Based Analysis (물리 모델 분석을 통한 상호 작용형 스키시뮬레이터 동작인식 시스템 개발)

  • Jin, Moon-Sub;Choi, Chun-Ho;Chung, Kyung-Ryul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • In this research, we have developed a ski-simulation system based on a physics-based simulation model using Newton's second law of motion. Key parameters of the model, which estimates skier's trajectory, speed and acceleration change due to skier's control on ski plate and posture changes, were derived from a field test study performed on real ski slope. Skier's posture and motion were measured by motion capture system composed of 13 high speed IR camera, and skier's control and pressure distribution on ski plate were measured by acceleration and pressure sensors attached on ski plate and ski boots. Developed ski-simulation model analyzes user's full body and center of mass using a depth camera(Microsoft Kinect) device in real time and provides feedback about force, velocity and acceleration for user. As a result, through the development of interactive ski-simulation motion recognition system, we accumulated experience and skills based on physics models for development of sports simulator.

A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System (NCW 환경에서 C4I 체계 전투력 상승효과 평가 알고리즘 : 기술 및 인적 요소 고려)

  • Jung, Whan-Sik;Park, Gun-Woo;Lee, Jae-Yeong;Lee, Sang-Hoon
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.55-72
    • /
    • 2010
  • Recently, the battlefield environment has changed from platform-centric warfare(PCW) which focuses on maneuvering forces into network-centric warfare(NCW) which is based on the connectivity of each asset through the warfare information system as information technology increases. In particular, C4I(Command, Control, Communication, Computer and Intelligence) system can be an important factor in achieving NCW. It is generally used to provide direction across distributed forces and status feedback from thoseforces. It can provide the important information, more quickly and in the correct format to the friendly units. And it can achieve the information superiority through SA(Situational Awareness). Most of the advanced countries have been developed and already applied these systems in military operations. Therefore, ROK forces also have been developing C4I systems such as KJCCS(Korea Joint Command Control System). And, ours are increasing the budgets in the establishment of warfare information systems. However, it is difficult to evaluate the C4I effectiveness properly by deficiency of methods. We need to develop a new combat effectiveness evaluation method that is suitable for NCW. Existing evaluation methods lay disproportionate emphasis on technical factors with leaving something to be desired in human factors. Therefore, it is necessary to consider technical and human factors to evaluate combat effectiveness. In this study, we proposed a new Combat Effectiveness evaluation algorithm called E-TechMan(A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System). This algorithm uses the rule of Newton's second law($F=(m{\Delta}{\upsilon})/{\Delta}t{\Rightarrow}\frac{V{\upsilon}I}{T}{\times}C$). Five factors considered in combat effectiveness evaluation are network power(M), movement velocity(v), information accuracy(I), command and control time(T) and collaboration level(C). Previous researches did not consider the value of the node and arc in evaluating the network power after the C4I system has been established. In addition, collaboration level which could be a major factor in combat effectiveness was not considered. E-TechMan algorithm is applied to JFOS-K(Joint Fire Operating System-Korea) system that can connect KJCCS of Korea armed forces with JADOCS(Joint Automated Deep Operations Coordination System) of U.S. armed forces and achieve sensor to shooter system in real time in JCS(Joint Chiefs of Staff) level. We compared the result of evaluation of Combat Effectiveness by E-TechMan with those by other algorithms(e.g., C2 Theory, Newton's second Law). We can evaluate combat effectiveness more effectively and substantially by E-TechMan algorithm. This study is meaningful because we improved the description level of reality in calculation of combat effectiveness in C4I system. Part 2 will describe the changes of war paradigm and the previous combat effectiveness evaluation methods such as C2 theory while Part 3 will explain E-TechMan algorithm specifically. Part 4 will present the application to JFOS-K and analyze the result with other algorithms. Part 5 is the conclusions provided in the final part.

Aviation Safety Regulation and ICAO's Response to Emerging Issues (항공안전규제와 새로운 이슈에 대한 ICAO의 대응)

  • Shin, Dong-Chun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.1
    • /
    • pp.207-244
    • /
    • 2015
  • Aviation safety is the stage in which the risk of harm to persons or of property damage is reduced to, and maintained at or below, an acceptable level through a continuing process of hazard identification and risk management. Many accidents and incidents have been taking place since 2014, while there had been relatively safer skies before 2014. International civil aviation community has been exerting great efforts to deal with these emerging issues, thus enhancing and ensuring safety throughout the world over the years. The Preamble of the Chicago Convention emphasizes safety and order of international air transport, and so many Articles in the Convention are related to the safety. Furthermore, most of the Annexes to the Convention are International Standards and Recommended Practices pertaining to the safety. In particular, Annex 19, which was promulgated in Nov. 2013, dealing with safety management system. ICAO, as law-making body, has Air Navigation Commission, Council, Assembly to deliberate and make decisions regarding safety issues. It is also implementing USOAP and USAP to supervise safety functions of member States. After MH 370 disappeared in 2014, ICAO is developing Global Tracking System whereby there should be no loophole in tracking the location of aircraft anywhere in world with the information provided by many stakeholders concerned. MH 17 accident drove ICAO to install web-based repository where information relating to the operation in conflict zones is provided and shared. In addition, ICAO has been initiating various solutions to emerging issues such as ebola outbreak and operation under extreme meteorological conditions. Considering the necessity of protection and sharing of safety data and information to enhance safety level, ICAO is now suggesting enhanced provisions to do so, and getting feedback from member States. It has been observed that ICAO has been approaching issues towards problem-solving from four different dimensions. First regarding time, it analyses past experiences and best practices, and make solutions in short, mid and long terms. Second, from space perspective, ICAO covers States, region and the world as a whole. Third, regarding stakeholders it consults with and hear from as many entities as it could, including airlines, airports, community, consumers, manufacturers, air traffic control centers, air navigation service providers, industry and insurers. Last not but least, in terms of regulatory changes, it identifies best practices, guidance materials and provisions which could become standards and recommended practices.