• Title/Summary/Keyword: feed-forward architecture

Search Result 35, Processing Time 0.02 seconds

EEG Analysis and Classification System (EEG 분석과 분류시스템)

  • jung Dae-Young;Kim Min-Soo;Seo Hee-Don
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.263-270
    • /
    • 2004
  • Recently, wavelet transform have been applied to various kinds of problems in many fields. In this paper, we propose method of Daubechies wavelet to detect several kinds of important characteristic waves in tasks EEG that are needed to diagnose EEG. We show that our system could be attained higher performance in detecting characteristic waves than the other methods. In this system, the architecture of the neural network is a three layered feed-forward networks with one hidden layer which implements the error back propagation teaming algorithm. Applying the algorithms to 4 subjects show 92% classification rates. The proposed system shows a little more accurate diagnosis for task EEG by Wavelet and neural network. From the simulation results by the implemented system, we demonstrated this research can be reduce doctor's labors and quantitative diagnosis of task EEG.

  • PDF

An Implementation of Neuro-Fuzzy Based Land Convert Pattern Classification System for Remote Sensing Image (뉴로-퍼지 알고리즘을 이용한 원격탐사 화상의 지표면 패턴 분류시스템 구현)

  • 이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.472-479
    • /
    • 1999
  • In this paper, we propose a land cover pattern classifier for remote sensing image by using neuro-fuzzy algorithm. The proposed pattem classifier has a 3-layer feed-forward architecture that is derived from generic fuzzy perceptrons, and the weights are con~posed of h u y sets. We also implement a neuro-fuzzy pattern classification system in the Visual C++ environment. To measure the performance of this, we compare it with the conventional neural networks with back-propagation learning and the Maximum-likelihood algorithms. We classified the remote sensing image into the eight classes covered the majority of land cover feature, selected the same training sites. Experimental results show that the proposed classifier performs well especially in the mixed composition area having many classes rather than the conventional systems.

  • PDF

An Adaptive Decision-Feedback Equalizer Architecture using RB Complex-Number Filter and chip-set design (RB 복소수 필터를 이용한 적응 결정귀환 등화기 구조 및 칩셋 설계)

  • Kim, Ho Ha;An, Byeong Gyu;Sin, Gyeong Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.2015-2024
    • /
    • 1999
  • Presented in this paper are a new complex-umber filter architecture, which is suitable for an efficient implementation of baseband signal processing of digital communication systems, and a chip-set design of adaptive decision-feedback equalizer (ADFE) employing the proposed structure. The basic concept behind the approach proposed in this paper is to apply redundant binary (RB) arithmetic instead of conventional 2’s complement arithmetic in order to achieve an efficient realization of complex-number multiplication and accumulation. With the proposed way, an N-tap complex-number filter can be realized using 2N RB multipliers and 2N-2 RB adders, and each filter tap has its critical delay of $T_{m.RB}+T_{a.RB}$ (where $T_{m.RB}, T_{a.RB}$are delays of a RB multiplier and a RB adder, respectively), making the filter structure simple, as well as resulting in enhanced speed by means of reduced arithmetic operations. To demonstrate the proposed idea, a prototype ADFE chip-set, FFEM (Feed-Forward Equalizer Module) and DFEM (Decision-Feedback Equalizer Module) that can be cascaded to implement longer filter taps, has been designed. Each module is composed of two complex-number filter taps with their LMS coefficient update circuits, and contains about 26,000 gates. The chip-set was modeled and verified using COSSAP and VHDL, and synthesized using 0.8- μm SOG (Sea-Of-Gate) cell library.

  • PDF

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

A $4^{th}$-Order 1-bit Continuous-Time Sigma-Delta Modulator for Acoustic Sensor (어쿠스틱 센서 IC용 4차 단일 비트 연속 시간 시그마-델타 모듈레이터)

  • Kim, Hyoung-Joong;Lee, Min-Woo;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.51-59
    • /
    • 2009
  • This paper presents the design of continuous-time sigma-delta modulator for acoustic sensor. The feedforward structure without summing block is used to reduce power consumption of sigma-delta modulator. A high-linearity active-RC filter is used to improve resolution of sigma-delta modulator. Excess loop delay problem in conventional continuous-time sigma-delta modulators is solved by our proposed architecture. A low power, high resolution fourth-order continuous-time sigma-delta modulator with 1-bit quantization was realized in a 0.13-${\mu}m$ 1-Poly 8-metal CMOS technology, with a core area of $0.58\;mm^2$. Simulation results show that the modulator achieves 91.3-dB SNR over a 25-kHz signal bandwidth with an oversampling ratio of 64, while dissipating $290{\mu}W$ from a 3.3-V supply.