• 제목/요약/키워드: feed manufacturing

검색결과 588건 처리시간 0.027초

원자력 발전소 보조급수펌프의 구조 건전성에 관한 연구 (A Study on the Structural Integrity of an Auxiliary Feed Water Pump in a Nuclear Power Plant)

  • 김재실;조방현
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.42-48
    • /
    • 2014
  • The auxiliary-feed-water pump (AFWP) used to supply water during a station black out situation at nuclear power plants should meet the seismic qualification regulations stipulated in IEEE Std 323 and 344, so as to withstand earthquakes or dangerous situations. Here, we establish a model for the estimation of the structural integrity of this type of pump. If the natural frequency that results from a modal analysis is less than 33 Hz, we adopt a dynamic analysis, instead of a static analysis. A dynamic analysis was carried out taking into consideration seismic conditions such as the floor response spectra (FRS), an operation-base earthquake (OBE), and a safe-shutdown earthquake (SSE). Finally, an analytical estimation of the structural integrity of an AFWP is made through a comparison of calculated values and allowable values. If the result is less than the allowable stress, the pump is deemed to have good structural integrity. In addition, future studies will involve a stability check for rotor accidents that may occur during the operation of the pump.

다중회귀분석을 이용한 BK7 글래스 MR Polishing 공정의 재료 제거 조건 분석 (Analysis of Material Removal Rate of Glass in MR Polishing Using Multiple Regression Design)

  • 김동우;이정원;조명우;신영재
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.184-190
    • /
    • 2010
  • Recently, the polishing process using magnetorheological fluids(MR fluids) has been focused as a new ultra-precision polishing technology for micro and optical parts such as aspheric lenses, etc. This method uses MR fluid as a polishing media which contains required micro abrasives. In the MR polishing process, the surface roughness and material removal rate of a workpiece are affected by the process parameters, such as the properties of used nonmagnetic abrasives(particle material, size, aspect ratio and density, etc.), rotating wheel speed, imposed magnetic flux density and feed rate, etc. The objective of this research is to predict MRR according to the polishing conditions based on the multiple regression analysis. Three polishing parameters such as wheel speed, feed rates and current value were optimized. For experimental works, an orthogonal array L27(313) was used based on DOE(Design of Experiments), and ANOVA(Analysis of Variance) was carried out. Finally, it was possible to recognize that the sequence of the factors affecting MRR correspond to feed rate, current and wheel speed, and to determine a combination of optimal polishing conditions.

기계구조용 탄소강(SM45C)의 단속절삭 시 절삭력예측을 위한 회귀방정식 도출 (Regression Equation Deduction for Cutting Force Prediction during Interrupted Cutting of Carbon Steel for Machine Structure (SM45C))

  • 배명일;이이선
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.40-45
    • /
    • 2016
  • Interrupted cutting has different cutting characteristics compared with continuous cutting. In interrupted cutting, the workpiece has a groove that regularly impacts the cutting tool and workpiece. Therefore, tool damage occurs rapidly, and this increases the cutting force and surface roughness. In this study, we performed interrupted cutting of carbon steel for machine structure (SM45C) using a coated carbide tool (TT7100). To predict the cutting force, we analyzed the experimental results with a regression analysis. The results were as follows: We confirmed that the factors affecting the principal force and radial force were cutting speed, depth of cut, and feed rate. From the multi-regression analysis, we deduced regression equations, and their coefficients of determination were 89.6, 89.27, and 28.27 for the principal, radial, and feed forces, respectively. This means that the regression equations were significant for the principal and radial forces but not for the feed force.

충전해석에 의한 Plug Cover Housing 금형의 피드시스템 설계 (Designing Mold Feed Systems for Plug Cover Housing with Filling Analysis)

  • 박종천;유만준
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.123-130
    • /
    • 2018
  • In this study, the optimum design of mold feed systems is determined for plug cover housing (PCH), which is a cover-assembly product that protects the wiring of automobile connectors. The design goal is to achieve the filling balance of the resin in the left and right covers while avoiding the occurrence of weld lines in the hinge as much as possible. For the optimization, an orthogonal array experiment and a main effect analysis of the design factors are performed, and the factors that cause the interactions with the two design characteristics are selected as the design variables. We present some design alternatives, i.e., some combinations of the design variables, and analyze the filling-simulation results, expected molding risk, and cost economics to select an optimum design solution among the design alternatives. In the optimal solution, the weld line is generated at a position outside the hinge, and the filling balance is also acceptable, showing that both design goals can be satisfied simultaneously despite conflicting with each other.

진동형 볼피더의 가진력 해석과 적용 (Analysis of Excitation Force and its Application in Vibratory Bowl Feeders)

  • 오석규;배강열
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.70-77
    • /
    • 2020
  • Vibratory bowl feeders are widely utilized to align and feed the parts stacked inside the bowl of a feeder. The electro-magnetic force of the electromagnet in a bowl feeder generates the excitation force for the bowl to vibrate in both the horizontal and vertical directions to continuously feed the parts on the track. The feed rate of the part depends on the associated displacement in each direction during the vibration. Therefore, the excitation force induced by the electromagnet should be estimated in advance to ensure the suitable design of the bowl feeder. In this study, a theoretical solution was developed to calculate the electro-magnetic force of the electromagnet for a bowl feeder. Using the proposed solution, the electro-magnetic forces corresponding to a variation in the input parameters of the electromagnet, such as the voltage, frequency, and air gap, could be obtained. The force values obtained using the theoretical solution exhibited a satisfactory agreement with the results obtained using the finite element method, thereby demonstrating the validity of the approach. Subsequently, the bowl displacements were analyzed using the motion equation for the bowl feeder when the theoretically obtained excitation force were applied to vibrate the feeder. The correlation between the vertical displacements of the bowl and input parameters of the electromagnet could be obtained.

비용요소를 고려한 자동차 차체조립라인의 설계 최적화 (Optimizing Design Problem in an Automotive Body Assembly Line Considering Cost Factors)

  • 이영훈;김동옥;백경민;신양우;문덕희
    • 한국시뮬레이션학회논문지
    • /
    • 제29권4호
    • /
    • pp.95-109
    • /
    • 2020
  • 이 논문에서는 자동차 차체 조립라인과 같은 제조시스템을 설계할 때, 설비투자비용과 같은 다양한 비용요소를 고려하여 최적 배치안을 결정하는 문제를 다룬다. 시스템의 성능 평가에 필요한 생산율 재공품 재고 수준을 추정하기 위해서는 시뮬레이션 실험 결과를 기반으로 하는 메타모델 방법론을 사용하였다. 최적화 문제의 목적함수는 목표생산율을 만족시키는 최소비용으로 정하였는데, 비용요소로는 로봇, 버퍼, 운송장비에 대한 투자비용을 고려하였고, 운영비용으로는 재공품 재고비용을 포함시켰다. 최적화 문제를 풀기 위해서는 하모니 탐색방법론을 사용하였다.

가공정밀도에 영향을 미치는 환경요소 분석 (Analysis of Environmental Factors Affecting the Machining Accuracy)

  • 김영복;이의삼;박준;황연;이준기
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

머시닝센터 가공시 정면커터 표면가공특성 연구 (On the Characteristics in Surface Cutting for Face Cutter of Machining Center)

  • 박달근;임대성
    • 한국공작기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.21-26
    • /
    • 2005
  • From on the machining center cutting work of 5534, the characteristics such as spindle speed and feed speed fir the third point height, average spacing of roughness peaks, bearing ratio, center line average, ten point height. experiments is roughness for sampling length determine to measuring length of cutting feed speed 200, 400, 600, 800mm/min and spindle speed 800, 1000, 1200, 1400rpm. Third point height is spindle speed with most suitable cutting condition 1000rpm. Third point height is feed speed with most suitable cutting condition 400mm/min. Average spacing of roughness peaks are spindle speed with most suitable cutting condition feed speed increased to average spacing of roughness Peaks are increased. Spindle speed increased to average spacing of roughness peaks are decreased. Bearing ratio is spindle speed with feed speed increased to bearing ratio decreased. Center line average is spindle speed with most suitable cutting condition at 1200rpm feed speed with most suitable cutting condition at 200mm/min to cutting foe roughness suddenly decreased. Ten point height is spindle speed with most suitable cutting condition 1200rpm at ten point height cutting face roughness to decreased and feed speed with most suitable cutting condition 800mm/min at ten point height cutting face roughness to decreased.

원료물질과 환원제의 외부공급에 따른 탄탈륨 분말의 제조 및 특성 (Production of Tantalum Powder and Characteristics by External Supply of Feed Material and Reductant)

  • 윤재식;박형호;배인성;김병일
    • 한국분말재료학회지
    • /
    • 제10권5호
    • /
    • pp.349-352
    • /
    • 2003
  • This study examined the correlation of various operational factors including reaction temperature and the quantity of reductant and diluent with the characteristics of powder using $K_2$ TaF$_{7}$ as feed materials, Na as a reductant and KCl/KF as a diluent. Also to control the particle size and shape, external supply system developed, it can provide a feed material and a reductant at a fixed quantity and evaluated the characteristics of tantalum powder. When the external supply system was applied instead of the batch type process that charges feed material, reductant and diluent at the same time, it was possible to induce regular reduction reaction between feed material and reductant, which increased the recovery rate and reduced the mixture of impurities. In particular, the application of the external supply system enabled the control of reaction temperature and reaction speed according to the feeding rate of feed material during reduced reaction, and resultantly it enabled the manufacturing of granular-shaped powder with a regular granularity of 2∼3 ${\mu}{\textrm}{m}$ and purity of 99.5%.

고속 이송계의 통합설계 (Integrated Design of High-speed Feed Drive Systems)

  • 김민석;정성종
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2028-2038
    • /
    • 2003
  • High-speed feed drive systems have been widely used in the manufacturing and semiconductor industries. Specifications for high-speed systems require more advanced capabilities than conventional feed drive systems. It is necessary to devise special design concepts to achieve the level of performance for high-speed feed drive systems. In this paper, an integrated design method is proposed for high-speed feed drive systems in which the interactions between mechanical and electrical subsystems ought to be considered simultaneously during the design process. Based on the integrated design method, a nonlinear optimal design procedure of mechanical subsystems considering the Abbe and radius errors is accomplished through the design process of electrical subsystems satisfying the control stability and the saturation condition of actuators as well as the relative stability. Both mechanical and electrical parameters are considered as design variables. Simulations and numerical case studies show that the integrated design method of high-speed feed drive systems creates results satisfying the desired performances of mechatronic systems.