• 제목/요약/키워드: feed manufacturing

검색결과 591건 처리시간 0.028초

Influences of External Factors on Business Performance of Domestic Animal Feed Enterprises in Vietnam

  • NGUYEN, Van Hau;DUONG, Thi Quynh Lien;QUYNH, To Thi Huong;TRANG, To Thi Thu
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.575-583
    • /
    • 2020
  • Vietnam is the country with the largest animal feed production in Southeast Asia. Domestic animal feed manufacturing enterprises play an important role in animal husbandry in particular and in agriculture in general. However, domestic animal feed enterprises in Vietnam are encountering shortcomings. This paper is conducted to investigate the impact levels of external determinants on business performance of domestic animal feed manufacturing enterprises, including: (i) policy and economic mechanism, (ii) supply-demand of animal feed products, and (iii) nature and level of market competition. We presented a research method, explaining the dependent variable 'business performance' and the independent variables. Data were collected from 120 questionnaires from domestic animal feed manufacturing enterprises. Based on these data, we use Cronbach's Alpha, EFA and run regression model for assessing the impact levels of each independent variable on the dependent variable of business performance of domestic animal feed manufacturing enterprises. The results show that three external determinants including (i) policy and economic mechanism, (ii) supply-demand of animal feed products, and (iii) nature and level of market competition, have positive relationships with business performance. Based on the findings, some recommendations are given for improving business performance of domestic animal feed manufacturing enterprises to ensure sustainability.

Improvement of Intermittent Advancing Accuracy of Pneumatic Cylinder-Driven Roll Feeder

  • So, Jung Duck
    • 한국생산제조학회지
    • /
    • 제25권3호
    • /
    • pp.164-170
    • /
    • 2016
  • A proposed pneumatic cylinder-driven roll feeder and an air press were designed to be operated automatically by a PLC. The accuracy of the intermittent feed pitch of the roll feeder was evaluated by measuring lengths of cut-offs of a strip stock by a digimatic vernier caliper. At each predetermined feed pitch, the proposed roll feeder was tested 100 times by varying the feed/cut intervals as 2.0/1.5, 3.0/2.0, and 3.5/2.5 s as test sets. The lengths of the cutoffs of the strip stock ranged from 9.89-10.34, 12.1-12.65, and 15.21-15.67 mm at the predetermined 10, 12, and 15 mm feed pitch, respectively, among the total of 300 samples in each feed pitch, regardless of the feed/shear interval. Therefore, the feed/cut interval at each selected feed pitch was found to have no effect on the accuracy of the intermittent advancing of the strip stock.

고속 가공을 이용한 금형의 효율적 생산 제 2 부: 사상 공정 및 가공 조건의 선정 (High Speed Machining Considering Efficient Manual Finishing Part II: Optimal Manual Finishing Process and Machining Condition)

  • 김민태;제성욱;이해성;주종남
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.38-45
    • /
    • 2006
  • In this work, optimal finish machining condition considering total time for mold or electrode manufacturing was investigated. First, manual finishing time according to the machining condition was analyzed for the work material. The effect of runout and phase shift of tool path on surface finish was also considered in those analyses. Secondly, optimal manual finishing processes were determined for various machining conditions. Finally, finish machining time and corresponding manual finishing time were taken into account for the estimation of the total time of manufacturing mold. Though small feed per tooth and pick feed reduced the manual finishing time, the finish machining time increased in such conditions. With a machining condition of feed per tooth of 0.2 mm and pick feed of 0.3 mm, the minimum total time of manufacturing mold was achieved in our machining condition.

A Study on the Feed Rate Optimization of a Ball Screw Driven Machine Tool Feed Slide for Minimum Vibrations

  • Choi, Yong-Hyu;Choi, Hoon-Ki;Kim, Soo-Tae;Choi, Eung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1028-1032
    • /
    • 2004
  • In order to prevent machine tool feed slide system from transient vibrations during operations, machine tool designers usually adopt some typical design solutions; box-in-box typed feed slides, optimizing moving body for minimum weight and dynamic compliance, and so on. Despite all efforts for optimizing design, a feed drive system may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a ball screw driven machine tool feed slide system for its minimum vibration. Firstly, a ball screw feed drive system was mathematically modeled as a 6-degree-of-freedom lumped parameter system. Next, a feed rate optimization of the system was carried out for minimum vibrations. The main idea of the feed rate optimization is to find out the most appropriate smooth acceleration profile with jerk continuity. A genetic algorithm was used in this feed rate optimization

  • PDF

고속볼스크류를 사용한 이송계 특성에 관한 연구 (A Study on Characteristics of Feed Drive System using High Speed Ballscrew)

  • 박성호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.279-284
    • /
    • 2000
  • It can be acquired the high effective productivity through of high speed, precision of machine tools, and then, machine tools will be got a competitive power. Industrially advanced countries already developed that the high speed feed is 60m/min using the high speed ball screw. Also, a lot of problems have happened the feed drive system. It is necessary to study about the character of positioning accuracy, heat generation and high speed control for feed drive system of high speed. in this study, we make use of the feed drive system with a high lead ball screw. We'll develop the feed drive system at the speed of 60m/min. Using the design of the mechanical element and the high speed control, the basic design concept can be established. After manufacturing one-shaft feed drive system and then conducting the performance test, It'll be analyzed properties of the high speed feed drive system.

  • PDF

고속화를 위한 공작기계 이송계의 설계 (Design of high speed feed drive system in machine tools)

  • 고해주;박성호;정윤교
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.39-44
    • /
    • 1999
  • It can be acquired the high effective productivity through of high speed, precision of machine tools, and then, machine tools will be got a competitive power. Industrially advanced countries already developed that the high speed feed is 60m/min using the high speed ball screw. Also, a lot of problems have happened the feed drive system. It is necessary to study about the character of positioning accuracy, heat generation and high speed control for feed drive system of high speed. In this study, we make use of the feed drive system with a ball screw of large-scale-lead. We'll develop the feed drive system at the speed of 60m/min. Using the design of the mechanical element and the high speed control, the basic design concept can be established. After manufacturing one-shaft feed drive system and conducting the performance test, it'll be analyzed properties of the high speed feed drive system.

  • PDF

고능률 선삭 가공을 위한 가상 가공 기반의 이송량 최적화 (Feed Optimization Based on Virtual Manufacturing for High-Efficiency Turning)

  • 강유구;조재완;김석일
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.960-966
    • /
    • 2007
  • High-efficient machining, which means to machine a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on virtual manufacturing was proposed to realize the high-efficient machining in turning process through the cutting power regulation. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

제조라인 통합 설계 및 분석(II) - 디지털 가상생산 기술 적용을 통한 지속적인 라인 설계, 분석 및 최적화 프로세스 (The Integrated Design and Analysis of Manufacturing Lines (II) - Continuous Design, Analysis and Optimization through Digital Virtual Manufacturing)

  • 최상수;성낙윤;신연식;노상도
    • 한국CDE학회논문집
    • /
    • 제19권2호
    • /
    • pp.148-156
    • /
    • 2014
  • Generally, over 95% of manufacturing cost is determined in the design and manufacturing preparation step, especially a great part of productivity is determined in the manufacturing preparation step. In order to improve the manufacturing competitiveness, we have to verify the problems that can be occurred in the production step and remove the unnecessary factors in the manufacturing preparation step. Thus, manufacturing industries are adopting digital manufacturing system based on modeling & simulation. In this paper, we introduce e-FEED system (electronic based Front End Engineering and Design) that is the integrated design and analysis system for optimized manufacturing line development based on simulation automation and explain the work process (Design, Analysis and Optimization) about manufacturing line development using e-FEED system. Also, the effect is described through the real implementation cases.

Wiper 공구에 의한 선삭가공시 표면거칠기 특성 (Roughness Characteristics of Turned Surface by Wiper Tool)

  • 이영문;류청원;손재환;김선일;정희철
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.55-60
    • /
    • 2008
  • Until a recent date, the surface finish generated in turning by the conventional cutting tool is directly related to the feed rate and the size of the tool nose radius. With this tool a large feed rate will give poorer surface finish and a large nose radius will generate a better surface finish. Recently a new concept in the tool design is introduced to achieve a better surface finish at a higher feed rate. This is the wiper tool, which has the portion of nose with infinite radius. This can remove the ridges left when the conventional tool is used. In this study two series of cutting tests with the wiper tool and the conventional tool are carried out under the various cutting conditions of cutting depth, feed rate and cutting speed. The effects of the wiper design and the cutting conditions on the surface roughness resulted are carefully examined and compared.

  • PDF

단침보강 세라믹 공구를 이용한 플라스틱 금형강(STAVAX)의 선삭가공 (Turning of Plastic Mold Steel(STAVAX) using Whisker Reinforced Ceramic)

  • 배명일;이이선
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.36-41
    • /
    • 2012
  • In this study, we turning plastic mold steel (STAVAX) against cutting speed, depth of cut, feed rate using whisker reinforced ceramic tool (WA1). To predict cutting force, analyze principal, radial, feed force with multi-regression analysis. Results are follows: From the analysis of variance, affected factor to cutting force feed rate, depth of cut, cutting speed in order and cutting speed was very small affect to cutting force. From multi-regression analysis, we extracted regression equation and the coefficient of determination$(R^2)$ was 0.9, 0.88, 0.856 at principal, radial and feed force. It means regression equation is significant. From the experimental verification, it was confirmed that principal, radial and feed force was predictable by regression equation.