• 제목/요약/키워드: fed-batch process

검색결과 111건 처리시간 0.026초

혐기성 연속회분식 공정을 이용한 분뇨처리시 소화슬러지의 침강 및 탈수특성 (Dewatering and Settling Characteristics of Digested Sludge from the Anaerobic Sequencing Batch Reactor for Treatment of Nightsoil)

  • 이준걸;장덕;허준무;손부순;장봉기;박종안
    • 한국환경과학회지
    • /
    • 제7권6호
    • /
    • pp.867-873
    • /
    • 1998
  • Laboratory study was conducted to provide basic data for operating anaerobic sequencing batch reactor(ASBR) process for treatment of nightsoil. The experiments were concerned with digestion characteristics, settleabiltity and dewaterability of digested sludge in ASBR system. Completely-mixed dally-fed control reactor without solid-liquid separation step was also operated to evaluate the baseline performance since the nature of nightsoil was changed with time. In all case, gas production from the ASBR shows 1.3 to 1.44 times higher than that from control, in spite of almost similar trend in organics removal. During thickening period, remarkable decrease in surface settling velocity was observed at the ASBRs compared with the control. In case of the ASBR run, flotation of mixed digested sludge was not occurred. Also, ultimate thickened volume of ASBRs increased 1.2~1.5 times compared with control. Dewaterability of digested sludge without conditioning decreased when the completely-mixed daily-fed reactor for ASBR run was converted to the ASBR. However, improvement of dewaterability of digested sludge from the ASBRs was observed as a result of addition of FeCl$_3$ to digested sludge for conditioning.

  • PDF

초산 생성을 위한 발효공정의 최적화 (Optimization of Fermentation Process for Acetic Acid Production)

  • 신진아;오남순
    • 산업식품공학
    • /
    • 제14권3호
    • /
    • pp.217-221
    • /
    • 2010
  • 플라스크 실험과 fermentor 발효실험으로 분리균주인 Acetobacter aceti B20 균주의 초산발효를 위한 몇가지 조건을 최적화하였다. 통기교반 조건이 제한된 flask 실험에서 B20 균주의 생육은 에탄올 농도에 민감하게 반응하여 4%의 에탄올 농도에서는 거의 생육이 되지 않았으며, 초산 생성량도 미미하였다. Flask 배양에서 B20 균주의 생육은 포도당 농도가 3%일 때 가장 좋았으나 농도가 증가할 수록 생육이 저해되었다. ${27^{\circ}C}$${30^{\circ}C}$의 온도에서 A. aceti B20 균주의 생육과 초산생성은 유사하였으며, 이보다 낮거나 높은 온도에서는 생육과 초산 생성이 모두 저하되었다. B20 균주의 최적 발효온도는 $27{\pm}3^{\circ}C$ 범위로 생각된다. Fermentor의 교반속도가 높아질수록 B20 균주의 생육도와 초산생성량이 증가하여 500 rpm일 때 초산농도 5.34%, 발효수율은 57.2%이었다. Batch식 발효에서 초기 에탄올 농도가 7%일 때 발효 120시간째 산도가 5.34%로 가장 높았으며, 이 때의 발효수율은 56.1%로 가장 양호하였다. Fedbatch식 발효에서 초산농도는 2회 feeding할 때 144시간째 8.76%로 최고에 도달하였으며, 이 때 발효수율은 50.6%로 feeding 횟수가 증가할수록 낮게 나타났다.

배지 및 유가식 회분배양 최적화에 의한 Streptomyces avermitilist 의 Avermectin B1a 생산성 향상 (Enhanced Production of Avermectin B1a with Streptomyces avermitilis by Optimization of Medium and Glucose Feeding)

  • 이병규;김종균;강희일;이종욱
    • 미생물학회지
    • /
    • 제37권2호
    • /
    • pp.158-163
    • /
    • 2001
  • Avermectin B1a의 생산성 향상을 위하여 무기인의 영향을 조사하고, 주요 유기질소원의 최적농도를 response surface methodology를 적용하여 구하였다. 1.5 g/ι의 농도로 무기인을 아버멕틴 생산배지에 첨가하였을 때 B1b 성분의 구성비가 5.8%에서 3%로 감소하였으며 B1a 생성은 영향을 받지 않았다. 배지의 주요성분인 대두분, 면실분, 효모추출물 중 아버멕틴 생성에 가장 큰 영향을 끼치는 유기질소원은 대두분이었다. 실험실 규모 발효조에서 Streptomyces avermifilis YA99-40의 유가식 회분배양에 의해 아버멕틴 생산성을 회분배양에 비해 44.8% 증가시킬 수 있었다. 발효조 배양시작 후 136, 206 시간에 각각 30, 20 g/ι의 당을 추가하는 유가식 회분배양을 실시하였을 때 B1a 성분의 최대 생산성은 회분배양 대비 86.3% 증가하였으며 생성된 총 아버멕틴 중 B1a의 구성비율도 화분배양에 비해 38%에서 45%로 향상되었다. 이 같은 결과는 산업적인 규모로 아버멕틴의 생산성을 향상시키는데 유용하게 적용시킬 수 있다.

  • PDF

Study on the variation of cellular physiology of Escherichia coli during high cell density cultivation using 2-dimensional gel electrophoresis

  • 윤상선;이상엽
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.219-222
    • /
    • 2000
  • Physiological changes of Escherichia coli during the fed-batch fermentation process were characterized in this study. Overall cellular protein samples prepared at the different stage of fermentation were separated by 2-dimensional gel electrophoresis (2-DE), and differently expressed 15 proteins, Phosphotransferase enzyme I, GroEL, Trigger factor, ${\beta}$ subunit of ATP synthase, Transcriptional regulator KDGR, Phosphoglycerate mutase 1, Inorganic pyrophosphatase, Serine Hydroxymethyl-transferase, ${\alpha}$ subunit of RNA polymerase, Elongation factor Tu, Elongation factor Ts, Tyrosine-tRNA ligase, DnaK suppressor protein, Transcriptional elongation factor, 30S ribosomal protein S6 were identified using matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS). When bacterial cells grow to high cell density, and IPTG-inducible heterologous protein is produced, expression level of overall cellular proteins was decreased. According to their functions in the cell, identified proteins were classified into three groups, proteins involved in transport process, small-molecule metabolism, and synthesis and modification of macromolecules.

  • PDF

Methanol induction strategy using the two-loop control-based DO-stat and its application to repeated induction in methylotrophic yeast Pichia pastoris

  • 최승진;임형권;우성환;정경환
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.333-335
    • /
    • 2001
  • A simple control strategy of DO-stat was introduced to the recombinant rGuamerin production process in Pichia pastoris. This induction strategy consisted of two interrelated control loops ‘by which oxygen ratio of inlet gas and methanol feeding rate was controlled. Using this control strategy, over-feeding or under-feeding of methanol could be avoided in concomitance with the efficient control of dissolved oxygen level. As a result, the cell concentration reached 130 g/L and rGuamerin expression level was 450 iu/L, which was more than 40% increased result comparing with the fed-batch process using manual control of methanol feeding rate.

  • PDF

Production of Poly(3-hydroxybutyrate) [P(3HB)] with High P(3HB) Content by Recombinant Escherichia coli Harboring the Alcaligenes latus P(3HB) Biosynthesis Genes and the E. coli ftsZ Gene

  • Choi, Jong-Il;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권6호
    • /
    • pp.722-725
    • /
    • 1999
  • Filamentation-suppressed recombinant Escherichia coli strain harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes and the E. coli ftsZ gene was constructed and cultivated for the production of poly(3-hydroxybutyrate) [P(3HB)] with high concentration and high content. By the pH-stat fed-batch culture of this recombinant E. coli strain XL1-Blue(pJC5), the final cell concentration and P(3HB) concentration obtained in 44.25h were 172.2g cell dry weight/l and 141.9g P(3HB)/l, respectively, resulting in productivity of 3.21g P(3HB)/l-h. More importantly, the P(3HB) content obtained was 82.4 wt %, which was significantly higher than that obtained with the recombinant E. coli harboring only the PHA biosynthesis genes.

  • PDF

혐기성 연속 회분식 공정에 의한 도시하수슬러지 소화시 고액분리 특성에 따른 처리효율평가 (Performances of Anaerobic Sequencing Batch Reactor for Digestion of Municipal Sludge at the Conditions of Critical Solid-liquid Separation)

  • Hur, Joon-Moo;Park, Jong-An
    • 한국환경보건학회지
    • /
    • 제28권5호
    • /
    • pp.77-85
    • /
    • 2002
  • 중온과 고온의 혐기성 연속회분식 공정(anaerobic sequencing batch reactor ; ASBR)에서 소화슬러지의 고액분리특성이 처리효율에 미치는 영향을 규명하고자 하였다. 연구결과 침전가능 고형물농도가 높은 도시하수슬러지 처리시 고액분리특성 및 고액분리형태가 전체처리의 안정성 및 처리효율에 상당한 영향을 미쳤다. 중온ASBR에서는 부상농축현상이 일어났으나, 고온ASBR에서는 중력농축에 의한 고액분리가 일어났으며, 상대적으로 고온 ASBR의 처리효율이 우수하였다. 그리고 수리학적 체류시간, cycle period 및 고액분리형태는 소화슬러지의 농축 특성과 임계 고형물농축을 지배하는 중요한 인자였다. 중온ASBR에서 고액분리 후 농축슬러지베드용적(thickened sludge bed volume)은 매우 중요한 운전 요소이며, 소화슬러지의 중력농축특성은 배출시 농축고형물의 유실현상과 침전시 계속적으로 발생하는 소화가스에 의한 슬러지계면의 파괴현상 및 슬러지베드의 불안전성을 야기시켜 처리효율을 감소시켰다. 중력농축의 경우 소화가스와 슬러지농축용적간의 상호작용(cyclic mutual effect)이 주기적으로 일어났으나, 부상농축에서는 이러한 현상이 일어나지 않았다.

연속흐름반응조에서 바이오필름형태의 탈염소화 미생물에 의한 TCE분해 모니터링 (Monitoring Anaerobic Reductive Dechlorination of TCE by Biofilm-Type Culture in Continuous-Flow System)

  • 박선화;한경진;홍의전;안홍일;김남희;김현구;김태승;김영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권5호
    • /
    • pp.49-55
    • /
    • 2012
  • A 1.28 L-batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloroethene (TCE) were operated for 120 days and 56 days, respectively, to study the effect of formate as electron donor on anaerobic reductive dechlorination (ARD) of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 ${\mu}mol$ TCE was completely degraded in the presence of 20% hydrogen gas ($H_2$) in less than 8 days by anaerobic dechlorination mixed-culture (300 mg-soluble protein), Evanite Culture with ability to completely degrade tetrachloroethene (PCE) and -TCE to ETH under anaerobic conditions. Once the formate was used as electron donor instead of hydrogen gas in batch or chemostat system, the TCE-dechlorination rate decreased and acetate production rate increased. It indicates that the concentration of hydrogen produced in both systems is possibly more close to threshold for homoacetogenesis process. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. Through the protein monitoring, we confirmed an increase of microbial population during the reactor operation. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 ${\mu}mol/L$) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at 18 days of HRT, but TCE was completely degraded at 36 days of HRT without accumulation of the injected-TCE during the left of experiment period, getting $H_2$ from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after beginning of CFSTR operation, it reached steady-state in the presence of excessive formate. We also evaluated microbial dynamic of the culture at different chemical state in the reactor by DGGE (denaturing gradient gel electrophoresis).

광합성 미세조류인 Chlorococcum littorale을 이용한 이산화탄소의 생물학적 고정화

  • 김태호;성기돈;이진석;이준엽;오상집;이현용
    • 한국미생물·생명공학회지
    • /
    • 제25권3호
    • /
    • pp.235-239
    • /
    • 1997
  • Chlorococcum littorale has been grown in high $CO_2$ concentrations to utilize $CO_2$ gas in the polluted air. The effect of incident light intensity on the specific growth rate is expressed by a photoinhibition model, showing half- saturation constant, $K_0\;as\;8\;(W/m^2)$ and inhibition constant, Ki as 35 $(W/m^2)$. The maximum specific growth rate was also estimated as 0.095 (1/day) under this condition. This strain maintained the optimum growth rate in 20% of $CO_2$ gas but 50% of input $CO_2$ gas is the maximum concentration considering the economical efficiency. The maximum Specific $CO_2$ consumption rate, $qCO_2$ was measured as 17.48 (mg $CO_2/g$ dry wt./day) in batch cultivation, 11.2 (mg $CO_2/g$ dry wt./day) in fed-batch cultivation and 10.87 (mg $CO_2/g$ dry wt./day) at 0.065 (1/day) of dilution rate in continuous cultivation. The chemical composition of the biomass obtained from this process showed 32.5% of protein, 27.5% of lipid, 16.5% of carbohydrate and ash 11.7%.

  • PDF

Pilot-scale modified SBR 공정에서 외부탄소원의 종류에 따른 탈질효율 비교 연구 (A Study on Denitrification Efficiency with External Carbon Sources in Pilot-scale Modified SBR)

  • 서인석;김병군;홍성택;정위득
    • 환경위생공학
    • /
    • 제17권3호
    • /
    • pp.52-59
    • /
    • 2002
  • Pilot-scale PSSBR(Phase Separated Sequencing Batch Reactor) was operated to evaluate requirement of external carbon sources(${\Delta}gCOD/{\Delta}gNO_3^{-}-N$) in denitrification. Methanol and fermented food waste were used as external carbon sources. Methanol and fermented food waste were fed to the anoxic state of first reactor and concentration were 50 and 40 mgCOD/L on the basis of concentration in reactor, respectively. In case that external carbon source was not used, average $NO_3^{-}-N$ concentration in effluent was 22.49 mg/L. When methanol and fermented food waste were fed, average $NO_3^{-}-N$ concentration in effluent were 10.13 mg/L and 6.3 mg/L, respectively and requirement of external carbon sources were 4.04 and 2.5 ${\Delta}gCOD/{\Delta}gNO_3^{-}-N$, respectively. Fermented food waste was better than methanol in denitrification efficiency. Therefore fermented food waste could be one of the excellent external carbon sources for nitrogen removal in biological nutrient removal process.