• 제목/요약/키워드: fecal microbiota

검색결과 126건 처리시간 0.028초

Home-Field Advantage: Why Host-Specificity is Important for Therapeutic Microbial Engraftment

  • Tyler J. Long
    • 한국미생물·생명공학회지
    • /
    • 제51권1호
    • /
    • pp.124-127
    • /
    • 2023
  • Among certain animals, gut microbiomes demonstrate species-specific patterns of beta diversity. This host-specificity is a potent driver of exogenous microbial exclusion. To overcome persistent translational limitations, translational microbiome research and therapeutic development must account for host-specific patterns of microbial engraftment. This commentary seeks to highlight the important implications of host-specificity for microbial ecology, Fecal Microbiota Transplantation (FMT), next-generation probiotics, and translational microbiota research.

Growth Performance and Post-Weaning Diarrhea in Piglets Fed a Diet Supplemented with Probiotic Complexes

  • Lu, Xuhong;Zhang, Ming;Zhao, Liang;Ge, Keshan;Wang, Zongyi;Jun, Luo;Ren, Fazheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1791-1799
    • /
    • 2018
  • Weaning stress can affect the growth performance and intestinal health of piglets. Dietary alternatives to antibiotics, such as dietary probiotics, especially those containing multiple microbial species, are a preventive strategy for effectively controlling post-weaning diarrhea. In this study, we investigated forty-eight crossbred piglets in three treatment groups for 21 days: the control and experimental groups were supplemented with Enterococcus faecium DSM 7134, Bacillus subtilis AS1.836 plus Saccharomyces cerevisiae ATCC 28338 (EBS) or Lactobacillus paracasei L9 CGMCC No. 9800 (EBL). On day 21, weaned piglets supplemented with two kinds of probiotic complexes showed increased growth performance and significantly reduced post-weaning diarrhea (p < 0.05). The EBS treatment increased acetic acid and propionic acid in the feces (p < 0.05), and the EBL treatment increased fecal acetic acid, propionic acid, butyrate and valerate (p < 0.05). Moreover, the fecal microbiota of the piglets changed markedly in EBL treatment. The addition of EBS and EBL may have similar effects on the prevention of diarrhea by improving the intestinal morphology and regulating the microbiota during the weaning period.

Dietary turmeric (Curcuma longa L.) supplementation improves growth performance, short-chain fatty acid production, and modulates bacterial composition of weaned piglets

  • Recharla, Neeraja;Balasubramanian, Balamuralikrishnan;Song, Minho;Puligundla, Pradeep;Kim, Soo-ki;Jeong, Jin Young;Park, Sungkwon
    • Journal of Animal Science and Technology
    • /
    • 제63권3호
    • /
    • pp.575-592
    • /
    • 2021
  • In livestock nutrition, natural feed additives are gaining increased attention as alternatives to antibiotic growth promoters to improve animal performance. This study investigated the effects of dietary turmeric supplementation on the growth performance and gut health of weaned piglets. A total of 48 weaned piglets (Duroc × [Landrace × Yorkshire]) were used in a 6-week feeding trial. All piglets were allotted to two dietary treatments: corn-soybean meal basal diet without turmeric (control) and with 1% weight per weight (w/w) turmeric powder (turmeric). The results showed that dietary inclusion of turmeric with the basal diet improved final body weight and total average daily gain (p < 0.05). The concentrations of short-chain fatty acids in the fecal samples, including acetic, butyric, and propionic acids, were higher in the turmeric group (p < 0.05). The villus height-to-crypt depth ratio was higher in the ileum of turmeric-fed piglets (p = 0.04). The 16S rRNA gene sequencing of fecal microbiota indicated that, at the phylum level, Firmicutes and Bacteroidetes were the most predominant taxa in all fecal samples. Bacteroidetes were significantly decreased in the turmeric group compared to the control group (p = 0.021). At the genus level, turmeric showed a decreased abundance of Prevotella (p = 0.021) and an increasing trend of Lactobacillus (p = 0.083). Among the total detected species, nine bacterial species showed significant differences between the two groups. The results of this study indicated that turmeric altered the gut microbiota and shortchain fatty acid production. This suggests that turmeric could be used as a potential alternative growth promoter for piglets.

Cheonggukjang Fermented with Bacillus subtilis SCGB574 Ameliorates High Fat Diet-Deteriorated Large Intestinal Health in Rat Model

  • Jae Ho, Choi;Jiyon, Kim;Taekyun, Shin;Myeong Seon, Ryu;Hee-Jong, Yang;Do-Youn, Jeong;Hong-Seok, Son;Tatsuya, Unno
    • 한국미생물·생명공학회지
    • /
    • 제50권4호
    • /
    • pp.522-532
    • /
    • 2022
  • Cheonggukjang is a traditional fermented food in Korea, which is known to exert beneficial effects on health. In this study, we evaluated the effects of cheonggukjang fermented by Bacillus subtilis SCGB 574 (B574) on high fat diet (HFD)-deteriorated large intestinal health. Rats were fed with HFD or HFD supplemented with 10.1% cheonggukjang (B574). Fecal microbiota was analyzed based on 16S rRNA gene sequences, and the fecal and serum metabolome were measured using GC-MS. Our results showed that SCGB574 intake significantly reduced body weight, restored tight junction components, and ameliorated inflammatory cell infiltration. SCGB574 also shifted gut microbiota by increasing the abundance of short chain fatty acid producers such as Alistipes and Flintibacter, although it decreased the abundance of Lactobacillus. Serum and fecal metabolome analyses showed significantly different metabolic profiles between the groups. The top five metabolites increased by SCGB574 were i) arginine biosynthesis, ii) alanine, aspartate, and glutamate metabolism; iii) starch and sucrose metabolism; iv) neomycin, kanamycin, and gentamicin biosynthesis; and v) galactose metabolism. These results showed that cheonggukjang fermented by SCGB574 ameliorates adverse effects of HFD through improving intestinal health.

Fecal Microbiota Transplantation via Commercial Oral Capsules for Chronic Enteropathies in Dogs and Cats

  • Min-Ok Ryu;Soh-Yeon Lee;Se-Hoon Kim;Hwa-Young Youn;Kyoung-Won Seo
    • 한국임상수의학회지
    • /
    • 제41권3호
    • /
    • pp.150-156
    • /
    • 2024
  • This retrospective case series assessed the effectiveness of commercially available oral fecal microbiota transplantation (FMT) for treating chronic enteropathies in eight animals, five dogs, and three cats, between 2020 and 2023 at the Seoul National University Veterinary Medical Teaching Hospital. Chronic enteropathies, often resistant to conventional therapies, present a significant challenge in veterinary medicine. To assess oral capsule FMT's effectiveness (Doggybiome® one capsule daily for dogs and Kittybiome® one capsule daily for cats) as a universal adjunctive therapy for chronic enteropathies across species not responding to traditional treatments. This retrospective case series applied a uniform evaluation of gastrointestinal symptoms and treatment efficacy, utilizing established scoring systems (Canine Inflammatory Bowel Disease Activity Index [CIBDAI] and Canine Chronic Enteropathy Clinical Activity Index [CCECAI] for dogs, Feline Chronic Enteropathy Activity Index [FCEAI] for cats) before and one month after FMT. This approach ensured consistency in hypothesis testing across the study population. Results revealed significant improvements in clinical indices post-FMT, with notable reductions in the CIBDAI, CCECAI, and FCEAI scores (p < 0.05). Additionally, symptoms such as anorexia, lethargy, diarrhea, vomiting, and weight loss showed marked improvement, with normalization of appetite and activity levels observed in most cases. No adverse effects were reported, indicating the safety and tolerability of this treatment. This study highlights the potential of oral capsule FMT as a viable therapeutic option for dogs and cats with chronic enteropathies unresponsive to conventional treatments, providing a new avenue for clinical management. Further research is warranted to expand these findings and explore the microbiome changes associated with FMT in veterinary patients.

Comparison of the Gut Microbiota of Centenarians in Longevity Villages of South Korea with Those of Other Age Groups

  • Kim, Bong-Soo;Choi, Chong Won;Shin, Hyoseung;Jin, Seon-Pil;Bae, Jung-Soo;Han, Mira;Seo, Eun Young;Chun, Jongsik;Chung, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.429-440
    • /
    • 2019
  • Several studies have attempted to identify factors associated with longevity and maintenance of health in centenarians. In this study, we analyzed and compared the gut microbiota of centenarians in longevity villages with the elderly and adults in the same region and urbanized towns. Fecal samples were collected from centenarians, elderly, and young adults in longevity villages, and the gut microbiota sequences of elderly and young adults in urbanized towns of Korea were obtained from public databases. The relative abundance of Firmicutes was found to be considerably higher in subjects from longevity villages than those from urbanized towns, whereas Bacteroidetes was lower. Age-related rearrangement of gut microbiota was observed in centenarians, such as reduced proportions of Faecalibacterium and Prevotella, and increased proportion of Escherichia, along with higher abundances of Akkermansia, Clostridium, Collinsella, and uncultured Christensenellaceae. Gut microbiota of centenarians in rehabilitation hospitals were also different to those residing at home. These differences could be due to differences in diet patterns and living environments. In addition, phosphatidylinositol signaling system, glycosphingolipid biosynthesis, and various types of N-glycan biosynthesis were predicted to be higher in the gut microbiota of centenarians (corrected p < 0.05). These three metabolic pathways of gut microbiota can be associated with the immune status and healthy gut environment of centenarians. Although further studies are necessary to validate the function of microbiota between groups, this study provides valuable information on centenarians' gut microbiota.

Increasing incidence of inflammatory bowel disease in children and adolescents: significance of environmental factors

  • Park, Sowon;Kang, Yunkoo;Koh, Hong;Kim, Seung
    • Clinical and Experimental Pediatrics
    • /
    • 제63권9호
    • /
    • pp.337-344
    • /
    • 2020
  • Inflammatory bowel disease (IBD) is a chronic relapsing immune-mediated disease of the intestinal tract. Although its prevalence is reportedly lower in Asia than in Western countries, the rapid increase in the incidence of IBD has drawn attention to its etiology, including genetic susceptibility and environmental factors. Specifically, recent studies concerning dietary treatments and intestinal microbiota suggest that these factors may interact with the immune system, and the imbalance of this relationship may lead to immune dysregulation in IBD. Changes in diet or alterations in the composition of the intestinal microbiota may be associated with the increasing incidence of IBD in Asia. Here, we aim to review recent studies on the role of diet and intestinal microbiota in IBD pathogenesis and the results of the investigations performed to modulate these factors.

The impact of cancer cachexia on gut microbiota composition and short-chain fatty acid metabolism in a murine model

  • Seung Min Jeong;Eun-Ju Jin;Shibo Wei;Ju-Hyeon Bae;Yosep Ji;Yunju Jo;Jee-Heon Jeong;Se Jin Im;Dongryeol Ryu
    • BMB Reports
    • /
    • 제56권7호
    • /
    • pp.404-409
    • /
    • 2023
  • This study investigates the relationship between cancer cachexia and the gut microbiota, focusing on the influence of cancer on microbial composition. Lewis lung cancer cell allografts were used to induce cachexia in mice, and body and muscle weight changes were monitored. Fecal samples were collected for targeted metabolomic analysis for short chain fatty acids and microbiome analysis. The cachexia group exhibited lower alpha diversity and distinct beta diversity in gut microbiota, compared to the control group. Differential abundance analysis revealed higher Bifidobacterium and Romboutsia, but lower Streptococcus abundance in the cachexia group. Additionally, lower proportions of acetate and butyrate were observed in the cachexia group. The study observed that the impact of cancer cachexia on gut microbiota and their generated metabolites was significant, indicating a host-to-gut microbiota axis.

Association between Mild Cognitive Impairment and Gut Microbiota in Elderly Korean Patients

  • Eun-Ju Kim;Jae-Seong Kim;Seong-Eun Park;Seung-Ho Seo;Kwang-Moon Cho;Sun Jae Kwon;Mee-Hyun Lee;Jae-Hong Kim;Hong-Seok Son
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1376-1383
    • /
    • 2023
  • Recent studies have confirmed that gut microbiota differs according to race or country in many diseases, including mild cognitive impairment (MCI) and Alzheimer's disease. However, no study has analyzed the characteristics of Korean MCI patients. This study was performed to observe the association between gut microbiota and MCI in the Korean elderly and to identify potential markers for Korean MCI patients. For this purpose, we collected fecal samples from Korean subjects who were divided into an MCI group (n = 40) and control group (n = 40) for 16S rRNA gene amplicon sequencing. Although no significant difference was observed in the overall microbial community profile, the relative abundance of several genera, including Bacteroides, Prevotella, and Akkermansia, showed significant differences between the two groups. In addition, the relative abundance of Prevotella was negatively correlated with that of Bacteroides (r = 0.733). This study may provide Korean-specific basic data for comparing the characteristics of the gut microbiota between Korean and non-Korean MCI patients.

The Gut Microbiota of Pregnant Rats Alleviates Fetal Growth Restriction by Inhibiting the TLR9/MyD88 Pathway

  • Hui Tang;Hanmei Li;Dan Li;Jing Peng;Xian Zhang;Weitao Yang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1213-1227
    • /
    • 2023
  • Fetal growth restriction (FGR) is a prevalent obstetric condition. This study aimed to investigate the role of Toll-like receptor 9 (TLR9) in regulating the inflammatory response and gut microbiota structure in FGR. An FGR animal model was established in rats, and ODN1668 and hydroxychloroquine (HCQ) were administered. Changes in gut microbiota structure were assessed using 16S rRNA sequencing, and fecal microbiota transplantation (FMT) was conducted. HTR-8/Svneo cells were treated with ODN1668 and HCQ to evaluate cell growth. Histopathological analysis was performed, and relative factor levels were measured. The results showed that FGR rats exhibited elevated levels of TLR9 and myeloid differentiating primary response gene 88 (MyD88). In vitro experiments demonstrated that TLR9 inhibited trophoblast cell proliferation and invasion. TLR9 upregulated lipopolysaccharide (LPS), LPS-binding protein (LBP), interleukin (IL)-1β and tumor necrosis factor (TNF)-α while downregulating IL-10. TLR9 activated the TARF3-TBK1-IRF3 signaling pathway. In vivo experiments showed HCQ reduced inflammation in FGR rats, and the relative cytokine expression followed a similar trend to that observed in vitro. TLR9 stimulated neutrophil activation. HCQ in FGR rats resulted in changes in the abundance of Eubacterium_coprostanoligenes_group at the family level and the abundance of Eubacterium_coprostanoligenes_group and Bacteroides at the genus level. TLR9 and associated inflammatory factors were correlated with Bacteroides, Prevotella, Streptococcus, and Prevotellaceae_Ga6A1_group. FMT from FGR rats interfered with the therapeutic effects of HCQ. In conclusion, our findings suggest that TLR9 regulates the inflammatory response and gut microbiota structure in FGR, providing new insights into the pathogenesis of FGR and suggesting potential therapeutic interventions.