• 제목/요약/키워드: fecal microbiota

검색결과 125건 처리시간 0.029초

In vitro 상에서 식품이 장내미생물에 미치는 영향 (In vitro investigation of food effects on human gut microbiota)

  • 전다빈;싱그 비니트;운노 타쯔야
    • Journal of Applied Biological Chemistry
    • /
    • 제64권1호
    • /
    • pp.75-81
    • /
    • 2021
  • 최근의 장내 미생물 연구에 따르면 우리의 건강에 대한 장내 미생물의 중요한 역할이 밝혀졌다. 이에 매년 다양한 건강 기능 식품이 개발되고 있다. 기능성 식품의 개발에는 기능성 식품의 유익한 효과를 확인하기위한 in-vivo 실험이 포함되는 경우가 많다. 그 이유로 기능성 식품이 장내 미생물에 미치는 영향을 조사하기 위해서 동물 실험을 자주 수행하고 있는 실정이다. 식품의 유익한 효과는 장내 미생물 생태가 식품에 의해 이동되어 유익한 박테리아의 증가, 잠재적인 병원성 박테리아의 감소 또는 둘 다에 따라 평가 될 수 있다. 동물 실험은 일반적으로 시간이 많이 걸리고 까다롭기 때문에 본 연구팀은 분변 미생물에 대한 in-vitro 연구로 식이 건강상의 이점을 얼마나 잘 반영하는지 조사했다. 본 연구에서는 두 사람의 배설물을 사용하여 15가지 음식이 장내미생물에 주는 영향을 조사했다. 결과는 식단에 따라 다양한 장내 미생물 이동을 보여 주었으며, 이는 일반적으로 알려진 유익한 식단(즉, 김치, 청국장)이 유산균과 비피도 박테리움을 증가 시켰음을 확인했다. 따라서, 우리는 식이 요법의 유익한 효과를 평가하기 위해 체외 분변 미생물균총 분석을 사용할 수 있다고 제안한다. 또한, 이 방법은 더 나아가 개인 맞춤형 식단을 설정하는 데 도움이 될 수 있다고 사료된다.

Gut microbiota derived from fecal microbiota transplantation enhances body weight of Mimas squabs

  • Jing Ren;Yumei Li;Hongyu Ni;Yan Zhang;Puze Zhao;Qingxing Xiao;Xiaoqing Hong;Ziyi Zhang;Yijing Yin;Xiaohui Li;Yonghong Zhang;Yuwei Yang
    • Animal Bioscience
    • /
    • 제37권8호
    • /
    • pp.1428-1439
    • /
    • 2024
  • Objective: Compared to Mimas pigeons, Shiqi pigeons exhibit greater tolerance to coarse feeding because of their abundant gut microbiota. Here, to investigate the potential of utilizing intestinal flora derived from Shiqi pigeons, the intestinal flora and body indices of Mimas squabs were evaluated after fecal microbiota transplantation (FMT) from donors. Methods: A total of 90 one-day-old squabs were randomly divided into the control group (CON), the low-concentration group (LC) and the high-concentration group (HC): gavaged with 200 μL of bacterial solution at concentrations of 0, 0.1, and 0.2 g/15 mL, respectively. Results: The results suggested that FMT improved the body weight of Mimas squabs in the HC and LC groups (p<0.01), and 0.1 g/15 mL was the optimal dose during FMT. After 16S rRNA sequencing was performed, compared to those in the CON group, the abundance levels of microflora, especially Lactobacillus, Muribaculaceae, and Megasphaera (p<0.05), in the FMT-treated groups were markedly greater. Random forest analysis indicated that the main functions of key microbes involve pathways associated with metabolism, further illustrating their important role in the host body. Conclusion: FMT has been determined to be a viable method for augmenting the weight and intestinal microbiota of squabs, representing a unique avenue for enhancing the economic feasibility of squab breeding.

Isolation and identification of intestinal bacteria from mose feces to study biological activities of plant materials

  • Jin, Jong-Sik
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.120-120
    • /
    • 2018
  • Intestinal microbiota is strongly connected to health of host. It has been reported that not only metabolic disease like diabetes and obesity, but psychological diseases are affected by composition of intestinal microbiota. To figure it out the importance of the composition and relationship between disease and microbiota, intensive researches have done with human and experimental animals. But, the composition of the intestinal microbiota could be affected by several factors such as experimental environments, feeding, water, and bedding. As a result, the data from each experimental group might be diverse. It also affects experiments about biological activities of plant materials. In this study, mouse intestinal bacteria were isolated from fresh feces and identified by 16S rRNA gene to use in biological activities of natural medicines. The fecal supernatant was anaerobically incubated at $37^{\circ}C$ for 48 hours. Colonies were picked up separately and incubated again in same condition to increase quantity to analyze and stock. The bacteria strains were listed up and could be used for many researches including biological activities of plant materials and change in composition of intestinal bacteria itself.

  • PDF

Dietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice

  • Garcia-Mazcorro, Jose F.;Pedreschi, Romina;Chew, Boon;Dowd, Scot E.;Kawas, Jorge R.;Noratto, Giuliana
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1247-1259
    • /
    • 2018
  • Raspberries are polyphenol-rich fruits with the potential to reduce the severity of the clinical signs associated with obesity, a phenomenon that may be related to changes in the gut microbiota. The aim of this study was to investigate the effect of raspberry supplementation on the fecal microbiota using an in vivo model of obesity. Obese diabetic db/db mice were used in this study and assigned to two experimental groups (with and without raspberry supplementation). Fecal samples were collected at the end of the supplementation period (8 weeks) and used for bacterial 16S rRNA gene profiling using a MiSeq instrument (Illumina). QIIME 1.8 was used to analyze the 16S data. Raspberry supplementation was associated with an increased abundance of Lachnospiraceae (p = 0.009), a very important group for gut health, and decreased abundances of Lactobacillus, Odoribacter, and the fiber degrader S24-7 family as well as unknown groups of Bacteroidales and Enterobacteriaceae (p < 0.05). These changes were enough to clearly differentiate bacterial communities accordingly to treatment, based on the analysis of UniFrac distance metrics. However, a predictive approach of functional profiles showed no difference between the treatment groups. Fecal metabolomic analysis provided critical information regarding the raspberry-supplemented group, whose relatively higher phytosterol concentrations may be relevant for the host health, considering the proven health benefits of these phytochemicals. Further studies are needed to investigate whether the observed differences in microbial communities (e.g., Lachnospiraceae) or metabolites relate to clinically significant differences that can prompt the use of raspberry extracts to help patients with obesity.

분변 미생물군집 프로젝트 (Toward The Fecal Microbiome Project)

  • 운노 타쯔야
    • 미생물학회지
    • /
    • 제49권4호
    • /
    • pp.415-418
    • /
    • 2013
  • 차세대 염기서열 분석(next generation sequencing, NGS) 기술의 발전으로 16S rRNA의 염기서열 분석이 미생물 군집 분석의 주된 방법으로 사용되고 있다. 인간의 건강과 질병에 관여하는 미생물들을 밝혀내기 위한 인간 미생물군집 프로젝트(human microbiome project, HMP)가 최근에 완료되었다. HMP는 세균에 의해 발생하는 여러 질병들의 특성들을 밝혀내었고, 특히 장에 서식하는 세균들에 대해 많은 연구가 수행되었다. 비록 인간의 장내 세균들에 대한 연구는 잘 수행되어왔지만, 다른 가축의 장내 세균에 대한 연구는 거의 이루어지지 않았다. 본 연구에서는 가축의 분변 미생물 다양성에 관해 조사하였고, 분변미생물 생태연구의 중요성을 제시 할 것이다. 한국에서의 분변 미생물 군집 프로젝트(fecal microbiome project) 시작을 본 연구논문을 통해 보고하고자 한다.

Comparison of Fecal Microbial Communities between White and Black Pigs

  • Guevarra, Robin B.;Kim, Jungman;Nguyen, Son G.;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • 제58권4호
    • /
    • pp.369-375
    • /
    • 2015
  • Meat from black pigs (BP) is in high demand compared with that from modern white pig (WP) breeds such as Landrace pigs owing to its high quality. However, the growth rate of black pigs is slower than that of white pig breeds. We investigated differences in the fecal microbial composition between white and black pigs to explore whether these breeds differed in the composition of their gut microbial communities. The swine gut microbiota was investigated using Illumina's MiSeq-based sequencing technology by targeting the V4 region of the 16S rRNA gene. Our results showed that the composition of the gut microbiota was significantly different between the two pig breeds. While the composition of the WP microbiota shifted according to the growth stage, fewer shifts in composition were observed for the BP gut microbiota. In addition, the WP gut microbiota showed a higher Firmicutes/Bacteroidetes ratio compared with that of BP. A high ratio between these phyla was previously reported as an obesity-linked microbiota composition. Moreover, the WP microbiota contained a significantly higher abundance of cellulolytic bacteria, suggesting a possibility of higher fiber digestion efficiency in WP compared to BP. These findings may be important factors affecting growth performance and energy-harvesting capacities in pigs. Our findings of differences in the gut microbiota composition between the two breeds may provide new leads to understand growth rate variation across pig breeds.

Gut Microbiome Alterations and Functional Prediction in Chronic Spontaneous Urticaria Patients

  • Zhang, Xinyue;Zhang, Jun;Chu, Zhaowei;Shi, Linjing;Geng, Songmei;Guo, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.747-755
    • /
    • 2021
  • The effects of the gut microbiome on both allergy and autoimmunity in dermatological diseases have been indicated in several recent studies. Chronic spontaneous urticaria (CSU) is a disease involving allergy and autoimmunity, and there is no report detailing the role of microbiota alterations in its development. This study was performed to identify the fecal microbial composition of CSU patients and investigate the different compositions and potential genetic functions on the fecal microbiota between CSU patients and normal controls. The gut microbiota of CSU patients and healthy individuals were obtained by 16s rRNA massive sequencing. Gut microbiota diversity and composition were compared, and bioinformatics analysis of the differences was performed. The gut microbiota composition results showed that Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia were dominant microbiota in CSU patients. The differential analysis showed that relative abundance of the Proteobacteria (p = 0.03), Bacilli (p = 0.04), Enterobacterales (p = 0.03), Enterobacteriaceae (p = 0.03) was significantly increased in CSU patients. In contrast, the relative abundance of Megamonas, Megasphaera, and Dialister (all p < 0.05) in these patients significantly decreased compared with healthy controls. The different microbiological compositions impacted normal gastrointestinal functions based on function prediction, resulting in abnormal pathways, including transport and metabolism. We found CSU patients exhibited gut microbiota dysbiosis compared with healthy controls. Our results indicated CSU is associated with gut microbiota dysbiosis and pointed out that the bacterial taxa increased in CSU patients, which might be involved in the pathogenesis of CSU. These results provided clues for future microbial-based therapies on CSU.

Commensal Microbiota and Cancer Immunotherapy: Harnessing Commensal Bacteria for Cancer Therapy

  • Jihong Bae; Kwangcheon Park;You-Me Kim
    • IMMUNE NETWORK
    • /
    • 제22권1호
    • /
    • pp.3.1-3.21
    • /
    • 2022
  • Cancer is one of the leading causes of death worldwide and the number of cancer patients is expected to continuously increase in the future. Traditional cancer therapies focus on inhibiting cancer growth while largely ignoring the contribution of the immune system in eliminating cancer cells. Recently, better understanding of immunological mechanisms pertaining to cancer progress has led to development of several immunotherapies, which revolutionized cancer treatment. Nonetheless, only a small proportion of cancer patients respond to immunotherapy and maintain a durable response. Among multiple factors contributing to the variability of immunotherapy response rates, commensal microbiota inhabiting patients have been identified as one of the most critical factors determining the success of immunotherapy. The functional diversity of microbiota differentially affects the host immune system and controls the efficacy of immunotherapy in individual cancer patients. Moreover, clinical studies have demonstrated that changing the gut microbiota composition by fecal microbiota transplantation in patients who failed a previous immunotherapy converts them to responders of the same therapy. Consequently, both academic and industrial researchers are putting extensive efforts to identify and develop specific bacteria or bacteria mixtures for cancer immunotherapy. In this review, we will summarize the immunological roles of commensal microbiota in cancer treatment and give specific examples of bacteria that show anticancer effect when administered as a monotherapy or as an adjuvant agent for immunotherapy. We will also list ongoing clinical trials testing the anticancer effect of commensal bacteria.

Effects of β-glucan with vitamin E supplementation on the growth performance, blood profiles, immune response, fecal microbiota, fecal score, and nutrient digestibility in weaning pigs

  • Tae Wook Goh;Hong Jun Kim;Kunyong Moon;Cheon Soo Kim;Yoo Yong Kim
    • Animal Bioscience
    • /
    • 제36권4호
    • /
    • pp.642-653
    • /
    • 2023
  • Objective: This study was conducted to evaluate effects of β-glucan with vitamin E supplementation on the growth performance, blood profiles, immune response, fecal microbiota, fecal score, and nutrient digestibility in weaning pigs. Methods: A total of 200 weaning pigs with an average body weight (BW) of 7.64±0.741 kg were allotted to five treatment groups and were divided based on sex and initial BW in four replicates with ten pigs per pen in a randomized complete block design. The experimental diets included a corn-soybean meal-based basal diet with or without 0.1% or 0.2% β-glucan and 0.02% vitamin E. The pigs were fed the diets for 6 weeks. A total of 15 barrows were used to evaluate the nutrient digestibility by the total collection method. The BW and feed intake were measured at the end of each phase. Blood samples were collected at the end of each phase, and fecal samples were collected at the end of the experiment. Results: The addition of β-glucan with vitamin E to weaning pig feed increased BW, average daily gain, and average daily feed intake. A significant decrease in yeast and mold and Proteobacteria and a tendency for Lactobacillus to increase compared to the control was shown when 0.1% β-glucan and 0.02% vitamin E were added. The fecal score in weaning pigs was lower in the treatments supplemented with 0.1% or 0.2% β-glucan and 0.02% vitamin E compared to the control. In addition, vitamin E was better supplied to weaning pigs by increasing the concentration of α-tocopherol in the blood of weaning pigs when 0.02% vitamin E was supplemented. However, there was no significant difference in either the immune response or nutrient digestibility. Conclusion: Inclusion of 0.1% β-Glucan with 0.02% vitamin E in a weaning pig's diet were beneficial to the growth performance of weaning pigs by improving intestinal microbiota and reducing the incidence of diarrhea.

Protective effects of Bacillus subtilis against Salmonella infection in the microbiome of Hy-Line Brown layers

  • Oh, Ju Kyoung;Pajarillo, Edward Alain B.;Chae, Jong Pyo;Kim, In Ho;Kang, Dae-Kyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권9호
    • /
    • pp.1332-1339
    • /
    • 2017
  • Objective: This study investigated the effects of Bacillus subtilis CSL2 (B. subtilis CSL2) administration before Salmonella challenge on the fecal microbiota and microbial functionality of Hy-line Brown (HLB) laying hens. Methods: Fecal samples were collected from control (CON), Salmonella-infected (SAL) and Salmonella-infected, probiotic-treated (PRO) groups before and after Salmonella challenge for microbiome analysis using 16S rRNA gene pyrosequencing. Results: Infection with Salmonella led to decreased microbial diversity in hen feces; diversity was recovered with Bacillus administration. In addition, Salmonella infection triggered significant alterations in the composition of the fecal microbiota. The abundance of the phylum Firmicutes decreased while that of Proteobacteria, which includes a wide variety of pathogens, increased significantly. Bacillus administration resulted in normal levels of abundance of Firmicutes and Proteobacteria. Analysis of bacterial genera showed that Salmonella challenge decreased the population of Lactobacillus, the most abundant genus, and increased populations of Pseudomonas and Flavobacterium genera by a factor of 3 to 5. On the other hand, Bacillus administration caused the abundance of the Lactobacillus genus to recover to control levels and decreased the population of Pseudomonas significantly. Further analysis of operational taxonomic units revealed a high abundance of genes associated with two-component systems and secretion systems in the SAL group, whereas the PRO group had more genes associated with ribosomes. Conclusion: The results of this study indicate that B. subtilis CSL2 administration can modulate the microbiota in HLB laying hens, potentially acting as a probiotic to protect against Salmonella Gallinarum infection.