• Title/Summary/Keyword: features-extracting

Search Result 606, Processing Time 0.023 seconds

A Study on Automatic Classification of Newspaper Articles Based on Unsupervised Learning by Departments (비지도학습 기반의 행정부서별 신문기사 자동분류 연구)

  • Kim, Hyun-Jong;Ryu, Seung-Eui;Lee, Chul-Ho;Nam, Kwang Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.345-351
    • /
    • 2020
  • Administrative agencies today are paying keen attention to big data analysis to improve their policy responsiveness. Of all the big data, news articles can be used to understand public opinion regarding policy and policy issues. The amount of news output has increased rapidly because of the emergence of new online media outlets, which calls for the use of automated bots or automatic document classification tools. There are, however, limits to the automatic collection of news articles related to specific agencies or departments based on the existing news article categories and keyword search queries. Thus, this paper proposes a method to process articles using classification glossaries that take into account each agency's different work features. To this end, classification glossaries were developed by extracting the work features of different departments using Word2Vec and topic modeling techniques from news articles related to different agencies. As a result, the automatic classification of newspaper articles for each department yielded approximately 71% accuracy. This study is meaningful in making academic and practical contributions because it presents a method of extracting the work features for each department, and it is an unsupervised learning-based automatic classification method for automatically classifying news articles relevant to each agency.

Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network (초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 2001
  • The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.

  • PDF

Modified HOG Feature Extraction for Pedestrian Tracking (동영상에서 보행자 추적을 위한 변형된 HOG 특징 추출에 관한 연구)

  • Kim, Hoi-Jun;Park, Young-Soo;Kim, Ki-Bong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 2019
  • In this paper, we proposed extracting modified Histogram of Oriented Gradients (HOG) features using background removal when tracking pedestrians in real time. HOG feature extraction has a problem of slow processing speed due to large computation amount. Background removal has been studied to improve computation reductions and tracking rate. Area removal was carried out using S and V channels in HSV color space to reduce feature extraction in unnecessary areas. The average S and V channels of the video were removed and the input video was totally dark, so that the object tracking may fail. Histogram equalization was performed to prevent this case. HOG features extracted from the removed region are reduced, and processing speed and tracking rates were improved by extracting clear HOG features. In this experiment, we experimented with videos with a large number of pedestrians or one pedestrian, complicated videos with backgrounds, and videos with severe tremors. Compared with the existing HOG-SVM method, the proposed method improved the processing speed by 41.84% and the error rate was reduced by 52.29%.

Hate Speech Detection Using Modified Principal Component Analysis and Enhanced Convolution Neural Network on Twitter Dataset

  • Majed, Alowaidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.112-119
    • /
    • 2023
  • Traditionally used for networking computers and communications, the Internet has been evolving from the beginning. Internet is the backbone for many things on the web including social media. The concept of social networking which started in the early 1990s has also been growing with the internet. Social Networking Sites (SNSs) sprung and stayed back to an important element of internet usage mainly due to the services or provisions they allow on the web. Twitter and Facebook have become the primary means by which most individuals keep in touch with others and carry on substantive conversations. These sites allow the posting of photos, videos and support audio and video storage on the sites which can be shared amongst users. Although an attractive option, these provisions have also culminated in issues for these sites like posting offensive material. Though not always, users of SNSs have their share in promoting hate by their words or speeches which is difficult to be curtailed after being uploaded in the media. Hence, this article outlines a process for extracting user reviews from the Twitter corpus in order to identify instances of hate speech. Through the use of MPCA (Modified Principal Component Analysis) and ECNN, we are able to identify instances of hate speech in the text (Enhanced Convolutional Neural Network). With the use of NLP, a fully autonomous system for assessing syntax and meaning can be established (NLP). There is a strong emphasis on pre-processing, feature extraction, and classification. Cleansing the text by removing extra spaces, punctuation, and stop words is what normalization is all about. In the process of extracting features, these features that have already been processed are used. During the feature extraction process, the MPCA algorithm is used. It takes a set of related features and pulls out the ones that tell us the most about the dataset we give itThe proposed categorization method is then put forth as a means of detecting instances of hate speech or abusive language. It is argued that ECNN is superior to other methods for identifying hateful content online. It can take in massive amounts of data and quickly return accurate results, especially for larger datasets. As a result, the proposed MPCA+ECNN algorithm improves not only the F-measure values, but also the accuracy, precision, and recall.

Algorithm for Speed Sign Recognition Using Color Attributes and Selective Region of Interest (칼라 특성과 선택적 관심영역을 이용한 속도 표지판 인식 알고리즘)

  • Park, Ki Hun;Kwon, Oh Seol
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.93-103
    • /
    • 2018
  • This paper presents a method for speed limit sign recognition in images. Conventional sign recognition methods decreases recognition accuracy because they are very sensitive and include repeated features. The proposed method emphasizes color attributes based on the weighted YUV color space. Moreover, the recognition accuracy can be improved by extracting the local region of interest (ROI) in the candidates. The proposed method uses the Haar features and the Adaboost classifier for recognition. Experimental results confirm that the proposed algorithm is superior to conventional algorithms under various speed signs and conditions.

Camera Extrinsic Parameter Estimation using 2D Homography and LM Method based on PPIV Recognition (PPIV 인식기반 2D 호모그래피와 LM방법을 이용한 카메라 외부인수 산출)

  • Cha Jeong-Hee;Jeon Young-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.2 s.308
    • /
    • pp.11-19
    • /
    • 2006
  • In this paper, we propose a method to estimate camera extrinsic parameter based on projective and permutation invariance point features. Because feature informations in previous research is variant to c.:men viewpoint, extraction of correspondent point is difficult. Therefore, in this paper, we propose the extracting method of invariant point features, and new matching method using similarity evaluation function and Graham search method for reducing time complexity and finding correspondent points accurately. In the calculation of camera extrinsic parameter stage, we also propose two-stage motion parameter estimation method for enhancing convergent degree of LM algorithm. In the experiment, we compare and analyse the proposed method with existing method by using various indoor images to demonstrate the superiority of the proposed algorithms.

Development of Automatic Feature Recognition System for CAD/CAPP Interface (CAD/CAPP 인터페이스를 위한 형상특징의 자동인식시스템 개발)

  • 오수철;조규갑
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 1992
  • This paper presents an automatic feature recognition system for recognizing and extracting feature information needed for the process planning input from a 3D CAD system. A given part is modeled by using the AutoCAD and feature information is automatically extracted from the AutoCAD database. The type of parts considered in this study is prismatic parts composed of faces perpendicular to the X, Y, Z axes and the types of features recognized by the proposed system are through steps, blind steps, through slots, blind slots, and pockets. Features are recognized by using the concept of convex points and concave points. Case studies are implemented to evaluate feasibilities of the function of the proposed system. The developed system is programmed by using Turbo Pascal on the IBM PC/AT on which the AutoCAD and the proposed system are implemented.

Diagnostics and Prognostics Based on Adaptive Time-Frequency Feature Discrimination

  • Oh, Jae-Hyuk;Kim, Chang-Gu;Cho, Young-Man
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1537-1548
    • /
    • 2004
  • This paper presents a novel diagnostic technique for monitoring the system conditions and detecting failure modes and precursors based on wavelet-packet analysis of external noise/vibration measurements. The capability is based on extracting relevant features of noise/vibration data that best discriminate systems with different noise/vibration signatures by analyzing external measurements of noise/vibration in the time-frequency domain. By virtue of their localized nature both in time and frequency, the identified features help to reveal faults at the level of components in a mechanical system in addition to the existence of certain faults. A prima-facie case is made via application of the proposed approach to fault detection in scroll and rotary compressors, although the methods and algorithms are very general in nature. The proposed technique has successfully identified the existence of specific faults in the scroll and rotary compressors. In addition, its capability of tracking the severity of specific faults in the rotary compressors indicates that the technique has a potential to be used as a prognostic tool.

Edge-based Method for Human Detection in an Image (영상 내 사람의 검출을 위한 에지 기반 방법)

  • Do, Yongtae;Ban, Jonghee
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.285-290
    • /
    • 2016
  • Human sensing is an important but challenging technology. Unlike other methods for sensing humans, a vision sensor has many advantages, and there has been active research in automatic human detection in camera images. The combination of Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM) is currently one of the most successful methods in vision-based human detection. However, extracting HOG features from an image is computer intensive, and it is thus hard to employ the HOG method in real-time processing applications. This paper describes an efficient solution to this speed problem of the HOG method. Our method obtains edge information of an image and finds candidate regions where humans very likely exist based on the distribution pattern of the detected edge points. The HOG features are then extracted only from the candidate image regions. Since complex HOG processing is adaptively done by the guidance of the simpler edge detection step, human detection can be performed quickly. Experimental results show that the proposed method is effective in various images.

A neural network approach to defect classification on printed circuit boards (인쇄 회로 기판의 결함 검출 및 인식 알고리즘)

  • An, Sang-Seop;No, Byeong-Ok;Yu, Yeong-Gi;Jo, Hyeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.337-343
    • /
    • 1996
  • In this paper, we investigate the defect detection by making use of pre-made reference image data and classify the defects by using the artificial neural network. The approach is composed of three main parts. The first step consists of a proper generation of two reference image data by using a low level morphological technique. The second step proceeds by performing three times logical bit operations between two ready-made reference images and just captured image to be tested. This results in defects image only. In the third step, by extracting four features from each detected defect, followed by assigning them into the input nodes of an already trained artificial neural network we can obtain a defect class corresponding to the features. All of the image data are formed in a bit level for the reduction of data size as well as time saving. Experimental results show that proposed algorithms are found to be effective for flexible defect detection, robust classification, and high speed process by adopting a simple logic operation.

  • PDF