• 제목/요약/키워드: feature-based optical flow

검색결과 54건 처리시간 0.024초

ASM-LK Optical Flow 기반 최적 얼굴정서 특징분석 기법 (Optimal Facial Emotion Feature Analysis Method based on ASM-LK Optical Flow)

  • 고광은;박승민;박준형;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.512-517
    • /
    • 2011
  • 얼굴영상에서 나타나는 정서특징을 분석하기 위하여 본 논문에서는 Active Shape Model (ASM)과 Lucas-Kanade (LK) optical flow 기법을 기반으로 하는 특징검출 및 분석방법을 제안한다. Facial Action Coding System에 근거하여 묘사된 정서적 특징을 고려하여, 특징이 분포하는 영역에 위치한 다수의 landmark로 shape 모델을 구성하고 모델에서 각 Landmark를 중심으로 하는 움직임 벡터 윈도우 내부의 픽셀에 대한 LK 기법을 통해 optical flow 벡터를 추출한다. 추출된 움직임 벡터의 방향성 조합에 근거하여 얼굴정서특징을 shape 모델로 표현할 수 있으며, 베이지안 분류기라는 확률 기반 추론기법을 기반으로 정서적 상태에 대한 추정할 수 있다. 또한, 정서특징분석과정의 연산 효율성과 정확성 향상을 도모하기 위하여 common spatial pattern (CSP) 분석기법을 적용하여 정서상태 별로 상관성이 높은 특징만으로 구성된 최적정서특징을 추출한다.

실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적 (Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems)

  • 김상진;신정호;이성원;백준기
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.23-34
    • /
    • 2004
  • 본 논문에서는 사전학습이 필요 없는 능동 특징점 모델(non-prior training active feature model; NPT AFM) 기반에서 광류(optical flow)를 이용한 객체추적 기술을 제안한다. 제안한 알고리듬은 비정형 객체에 대한 분석[1]에 초점을 두고 있으며, 실시간에서 NPT-AFM을 사용한 강건한 추적을 가능하게 한다. NPT-AFM 알고리듬은 관심 객체의 위치를 파악하는 과정 (localization)과 이전 프레임 정보와 현재 프레임 정보를 이용하여, 객체의 위치를 예측(prediction), 보정(correction)하는 과정으로 나눌 수 있다 위치 파악 과정에서는 움직임 분할(motion segmentation)을 수행한 후 개선된 Shi-Tomasi의 특징점 추적 알고리듬[2]을 사용 하였다. 예측 및 보정 과정에서는 광류 정보를 사용하여 특징점을 추적하고[3] 만약, 특징점이 적절히 추적 되지 않거나 추적에 실패하면 특징점들의 시간(temporal), 공간(spatial)적 정보를 이용하여 예측, 보정하게 된다. 객체의 형태 (shape)대신 특징점을 사용하였으며, 객체를 추적하는 과정에서 특징점들은 능동 특징점 모델(active feature model; AFM)을 위한 학습 집합(training sets)의 요소로 갱신된다. 실험결과, 제안한 NPT-AF% 기반 추적 알고리듬은 실시간에서 비정형 객체를 추적하는데 강건함을 보석준다.

셀룰라 비선형 네트워크를 이용한 특징점 궤적 상에서 Optical Flow 검출 (Detection of Optical Flows on the Trajectories of Feature Points Using the Cellular Nonlinear Neural Networks)

  • 손혼락;김형숙
    • 전자공학회논문지CI
    • /
    • 제37권6호
    • /
    • pp.10-21
    • /
    • 2000
  • 거리 변환(Distance Transform)을 수행할 수 있는 셀룰라 비선형 네트워크 구조와 특징 점들의 제적 상에서 거리 변환을 이용한 optical flow 검출 방법을 제안하였다. 움직이는 물체의 추적이나 카메라의 움직임 파악 같은 응용 분야에서는 수가 적더라도 정확하고 확실한 optical flow가 더 중요하다. 본 연구는 특징점들의 이동 궤적 상에서 거리 변환 기법을 이용하여 거리 변환 필드(Distance Transform Field)를 생성시키고 거리 변환 필드상에서 궤적의 움직인 거리 값과 방향을 추출함으로써 optical flow를 구하는 방법이다. 이 방법은 영상 정보를 거리 정보로 변환하여 사용하게 되므로 잡음의 영향을 적게 받으며 필요한 연산들이 아날로그 회로에 의해 처리되므로 처리 속도가 빠르고, 지역적 처리 특성을 갖기 때문에 하드웨어 구현이 용이하다는 특징이 있다. 또한, 본 연구에서는 제안한 알고리즘의 핵심부분을 하드웨어로 구현하기 위해 셀룰라 비선형 네트워크(Celluar Nonlinear Neural Network)구조를 제안하였다. 제안한 구조와 알고리즘을 검증하기 위해 다양한 영상과 환경에 대한 시뮬레이션을 수행하여 결과를 제시하였다.

  • PDF

셀룰라 비선형 회로 구조를 이용한 optical flow 검출 (Detecton of OPtical Flow Using Cellular Nonlinear Neural Networks)

  • 손홍락;김형석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3053-3055
    • /
    • 2000
  • The Cellular Nonlinear Networks structure for Distance Transform (DT) and the robust optical flow detection algorithm based on the DT are proposed. The proposed algorithm is for detecting the optical flows on the trajectories only of the feature points. The translation lengths and the directions of feature movements are detected on the trajectories of feature points on which Distance Transform Field is developed. The robustness caused from the use of the Distance Transform and the easiness of hardware implementation with local analog circuits are the properties of the proposed structure, To verify the performance of the proposed structure and the algorithm, simulation has been done about zooming image.

  • PDF

다중 채널 동적 객체 정보 추정을 통한 특징점 기반 Visual SLAM (A New Feature-Based Visual SLAM Using Multi-Channel Dynamic Object Estimation)

  • 박근형;조형기
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.65-71
    • /
    • 2024
  • An indirect visual SLAM takes raw image data and exploits geometric information such as key-points and line edges. Due to various environmental changes, SLAM performance may decrease. The main problem is caused by dynamic objects especially in highly crowded environments. In this paper, we propose a robust feature-based visual SLAM, building on ORB-SLAM, via multi-channel dynamic objects estimation. An optical flow and deep learning-based object detection algorithm each estimate different types of dynamic object information. Proposed method incorporates two dynamic object information and creates multi-channel dynamic masks. In this method, information on actually moving dynamic objects and potential dynamic objects can be obtained. Finally, dynamic objects included in the masks are removed in feature extraction part. As a results, proposed method can obtain more precise camera poses. The superiority of our ORB-SLAM was verified to compared with conventional ORB-SLAM by the experiment using KITTI odometry dataset.

Hand Gesture Recognition using Optical Flow Field Segmentation and Boundary Complexity Comparison based on Hidden Markov Models

  • Park, Sang-Yun;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제14권4호
    • /
    • pp.504-516
    • /
    • 2011
  • In this paper, we will present a method to detect human hand and recognize hand gesture. For detecting the hand region, we use the feature of human skin color and hand feature (with boundary complexity) to detect the hand region from the input image; and use algorithm of optical flow to track the hand movement. Hand gesture recognition is composed of two parts: 1. Posture recognition and 2. Motion recognition, for describing the hand posture feature, we employ the Fourier descriptor method because it's rotation invariant. And we employ PCA method to extract the feature among gesture frames sequences. The HMM method will finally be used to recognize these feature to make a final decision of a hand gesture. Through the experiment, we can see that our proposed method can achieve 99% recognition rate at environment with simple background and no face region together, and reduce to 89.5% at the environment with complex background and with face region. These results can illustrate that the proposed algorithm can be applied as a production.

능동 특징점 모델을 이용한 스테레오 영상 기반의 실시간 객체 추적 (Stereo Images-Based Real-time Object Tracking Using Active Feature Model)

  • 박민규;장종환
    • 정보처리학회논문지B
    • /
    • 제16B권2호
    • /
    • pp.109-116
    • /
    • 2009
  • 본 논문에서는 스테레오 영상 기반에서 능동 특징점 모델(active feature model)과 광류(optical flow)를 이용한 객체 추적 기술을 제안한다. 스테레오의 기하학적 정보와 변위를 이용하여 관심 객체와 특징점의 2.5차원 이동 정보(translation information)를 계산한다. 이 정보를 이용하여 폐색 객체의 특징점의 이동 정보를 예측하여 추적 성능을 개선하였다. 정형(rigid) 및 비정형(non-rigid) 객체에 실험을 하였다. 실험 결과 복잡한 배경 속에서의 실시간 객체 추적이 가능하였다. 또한 정형, 비정형 객체에 관계없이 추적이 가능 하였으며 폐색 상황에 향상된 결과를 보였다.

천정부착 랜드마크와 광류를 이용한 단일 카메라/관성 센서 융합 기반의 인공위성 지상시험장치의 위치 및 자세 추정 (Pose Estimation of Ground Test Bed using Ceiling Landmark and Optical Flow Based on Single Camera/IMU Fusion)

  • 신옥식;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, the pose estimation method for the satellite GTB (Ground Test Bed) using vision/MEMS IMU (Inertial Measurement Unit) integrated system is presented. The GTB for verifying a satellite system on the ground is similar to the mobile robot having thrusters and a reaction wheel as actuators and floating on the floor by compressed air. The EKF (Extended Kalman Filter) is also used for fusion of MEMS IMU and vision system that consists of a single camera and infrared LEDs that is ceiling landmarks. The fusion filter generally utilizes the position of feature points from the image as measurement. However, this method can cause position error due to the bias of MEMS IMU when the camera image is not obtained if the bias is not properly estimated through the filter. Therefore, it is proposed that the fusion method which uses the position of feature points and the velocity of the camera determined from optical flow of feature points. It is verified by experiments that the performance of the proposed method is robust to the bias of IMU compared to the method that uses only the position of feature points.

Human Action Recognition Based on An Improved Combined Feature Representation

  • Zhang, Ning;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1473-1480
    • /
    • 2018
  • The extraction and recognition of human motion characteristics need to combine biometrics to determine and judge human behavior in the movement and distinguish individual identities. The so-called biometric technology, the specific operation is the use of the body's inherent biological characteristics of individual identity authentication, the most noteworthy feature is the invariance and uniqueness. In the past, the behavior recognition technology based on the single characteristic was too restrictive, in this paper, we proposed a mixed feature which combined global silhouette feature and local optical flow feature, and this combined representation was used for human action recognition. And we will use the KTH database to train and test the recognition system. Experiments have been very desirable results.

안정적인 실시간 얼굴 특징점 추적과 감정인식 응용 (Robust Real-time Tracking of Facial Features with Application to Emotion Recognition)

  • 안병태;김응희;손진훈;권인소
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".