• Title/Summary/Keyword: feature projection

Search Result 217, Processing Time 0.025 seconds

Gabor-Features Based Wavelet Decomposition Method for Face Detection (얼굴 검출을 위한 Gabor 특징 기반의 웨이블릿 분해 방법)

  • Lee, Jung-Moon;Choi, Chan-Sok
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.143-148
    • /
    • 2008
  • A real-time face detection is to find human faces robustly under the cluttered background free from the effect of occlusion by other objects or various lightening conditions. We propose a face detection system for real-time applications using wavelet decomposition method based on Gabor features. Firstly, skin candidate regions are extracted from the given image by skin color filtering and projection method. Then Gabor-feature based template matching is performed to choose face cadidate from the skin candidate regions. The chosen face candidate region is transformed into 2-level wavelet decomposition images, from which feature vectors are extracted for classification. Based on the extracted feature vectors, the face candidate region is finally classified into either face or nonface class by the Levenberg-Marguardt back-propagation neural network.

  • PDF

A Study on the Fractal Attractor Creation and Analysis of the Printed Korean Characters

  • Shon, Young-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • Chaos theory is a study researching the irregular, unpredictable behavior of deterministic and non-linear dynamical system. The interpretation using Chaos makes us evaluate characteristic existing in status space of system by tine series, so that the extraction of Chaos characteristic understanding and those characteristics enables us to do high precision interpretation. Therefore, This paper propose the new method which is adopted in extracting character features and recognizing characters using the Chaos Theory. Firstly, it gets features of mesh feature, projection feature and cross distance feature from input character images. And their feature is converted into time series data. Then using the modified Henon system suggested in this paper, it gets last features of character image after calculating Box-counting dimension, Natural Measure, information bit and information dimension which are meant fractal dimension. Finally, character recognition is performed by statistically finding out the each information bit showing the minimum difference against the normalized pattern database. An experimental result shows 99% character classification rates for 2,350 Korean characters (Hangul) using proposed method in this paper.

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

3-D Pose Estimation of an Elliptic Object Using Two Coplanar Points (두 개의 공면점을 활용한 타원물체의 3차원 위치 및 자세 추정)

  • Kim, Heon-Hui;Park, Kwang-Hyun;Ha, Yun-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.23-35
    • /
    • 2012
  • This paper presents a 3-D pose (position and orientation) estimation method for an elliptic object in 3-D space. It is difficult to resolve the problem of determining 3-D pose parameters with respect to an elliptic feature in 3-D space by interpretation of its projected feature onto an image plane. As an alternative, we propose a two points-based pose estimation algorithm to seek the 3-D information of an elliptic feature. The proposed algorithm determines a homogeneous transformation uniquely for a given correspondence set of an ellipse and two coplanar points that are defined on model and image plane, respectively. For each plane, two triangular features are extracted from an ellipse and two points based on the polarity in 2-D projection space. A planar homography is first estimated by the triangular feature correspondences, then decomposed into 3-D pose parameters. The proposed method is evaluated through a series of experiments for analyzing the errors of 3-D pose estimation and the sensitivity with respect to point locations.

Comparative studies on numerical optimal design techniques (수치해석에 의한 최적화 설계 기법의 비교 연구)

  • 조선휘;박종근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 1982
  • Computer codes on two numerical optimization methods-Sequentially Unconstrained Minimization Technique (SUMT) and Gradient Projection Method-are constructed and tested with several test problems. Design formulation of tension - compression coil spring is set up and the solution is obtained. Consequently, the feature, the advantage and the limitation of these methods, made clear through the tests, are discussed.

  • PDF

Luminance Compensation using Feature Points and Histogram for VR Video Sequence (특징점과 히스토그램을 이용한 360 VR 영상용 밝기 보상 기법)

  • Lee, Geon-Won;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.808-816
    • /
    • 2017
  • 360 VR video systems has become important to provide immersive effect for viewers. The system consists of stitching, projection, compression, inverse projection, viewport extraction. In this paper, an efficient luminance compensation technique for 360 VR video sequences, where feature extraction and histogram equalization algorithms are utilized. The proposed luminance compensation algorithm enhance the performance of stitching in 360 VR system. The simulation results showed that the proposed technique is useful to increase the quality of the displayed image.

VR Image Watermarking Method Considering Production Environments (제작 환경을 고려한 VR 영상의 워터마킹 방법)

  • Moon, Won-jun;Seo, Young-ho;Kim, Dong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.561-563
    • /
    • 2019
  • This paper proposes a watermarking method for copyright protection of images used in VR. The Embedding method is that finds the point through the SIFT feature points, inserts the watermark by using DWT and QIM on the surrounding area. The objective image to extract the embedded watermark is the projected image and its method finds the SIFT feature points and extracts watermark data from its surrounding areas after correction by using inverse process of matching and projection in the VR image production process. By comparing the NCC and BER between the extracted watermark and the inserted watermark, the watermark is determined by accumulating the watermark having a threshold value or more. This is confirmed by comparing with a conventional method.

  • PDF

Head Pose Estimation Based on Perspective Projection Using PTZ Camera (원근투영법 기반의 PTZ 카메라를 이용한 머리자세 추정)

  • Kim, Jin Suh;Lee, Gyung Ju;Kim, Gye Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.7
    • /
    • pp.267-274
    • /
    • 2018
  • This paper describes a head pose estimation method using PTZ(Pan-Tilt-Zoom) camera. When the external parameters of a camera is changed by rotation and translation, the estimated face pose for the same head also varies. In this paper, we propose a new method to estimate the head pose independently on varying the parameters of PTZ camera. The proposed method consists of 3 steps: face detection, feature extraction, and pose estimation. For each step, we respectively use MCT(Modified Census Transform) feature, the facial regression tree method, and the POSIT(Pose from Orthography and Scaling with ITeration) algorithm. The existing POSIT algorithm does not consider the rotation of a camera, but this paper improves the POSIT based on perspective projection in order to estimate the head pose robustly even when the external parameters of a camera are changed. Through experiments, we confirmed that RMSE(Root Mean Square Error) of the proposed method improve $0.6^{\circ}$ less then the conventional method.

Homogeneous and Non-homogeneous Polynomial Based Eigenspaces to Extract the Features on Facial Images

  • Muntasa, Arif
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.591-611
    • /
    • 2016
  • High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.

An Improved RSR Method to Obtain the Sparse Projection Matrix (희소 투영행렬 획득을 위한 RSR 개선 방법론)

  • Ahn, Jung-Ho
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.605-613
    • /
    • 2015
  • This paper addresses the problem to make sparse the projection matrix in pattern recognition method. Recently, the size of computer program is often restricted in embedded systems. It is very often that developed programs include some constant data. For example, many pattern recognition programs use the projection matrix for dimension reduction. To improve the recognition performance, very high dimensional feature vectors are often extracted. In this case, the projection matrix can be very big. Recently, RSR(roated sparse regression) method[1] was proposed. This method has been proved one of the best algorithm that obtains the sparse matrix. We propose three methods to improve the RSR; outlier removal, sampling and elastic net RSR(E-RSR) in which the penalty term in RSR optimization function is replaced by that of the elastic net regression. The experimental results show that the proposed methods are very effective and improve the sparsity rate dramatically without sacrificing the recognition rate compared to the original RSR method.