• Title/Summary/Keyword: feature projection

Search Result 217, Processing Time 0.031 seconds

Generic Training Set based Multimanifold Discriminant Learning for Single Sample Face Recognition

  • Dong, Xiwei;Wu, Fei;Jing, Xiao-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.368-391
    • /
    • 2018
  • Face recognition (FR) with a single sample per person (SSPP) is common in real-world face recognition applications. In this scenario, it is hard to predict intra-class variations of query samples by gallery samples due to the lack of sufficient training samples. Inspired by the fact that similar faces have similar intra-class variations, we propose a virtual sample generating algorithm called k nearest neighbors based virtual sample generating (kNNVSG) to enrich intra-class variation information for training samples. Furthermore, in order to use the intra-class variation information of the virtual samples generated by kNNVSG algorithm, we propose image set based multimanifold discriminant learning (ISMMDL) algorithm. For ISMMDL algorithm, it learns a projection matrix for each manifold modeled by the local patches of the images of each class, which aims to minimize the margins of intra-manifold and maximize the margins of inter-manifold simultaneously in low-dimensional feature space. Finally, by comprehensively using kNNVSG and ISMMDL algorithms, we propose k nearest neighbor virtual image set based multimanifold discriminant learning (kNNMMDL) approach for single sample face recognition (SSFR) tasks. Experimental results on AR, Multi-PIE and LFW face datasets demonstrate that our approach has promising abilities for SSFR with expression, illumination and disguise variations.

Parallel Model Feature Extraction to Improve Performance of a BCI System (BCI 시스템의 성능 개선을 위한 병렬 모델 특징 추출)

  • Chum, Pharino;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1022-1028
    • /
    • 2013
  • It is well knowns that based on the CSP (Common Spatial Pattern) algorithm, the linear projection of an EEG (Electroencephalography) signal can be made to spaces that optimize the discriminant between two patterns. Sharing disadvantages from linear time invariant systems, CSP suffers from the non-stationary nature of EEGs causing the performance of the classification in a BCI (Brain-Computer Interface) system to drop significantly when comparing the training data and test data. The author has suggested a simple idea based on the parallel model of CSP filters to improve the performance of BCI systems. The model was tested with a simple CSP algorithm (without any elaborate regularizing methods) and a perceptron learning algorithm as a classifier to determine the improvement of the system. The simulation showed that the parallel model could improve classification performance by over 10% compared to conventional CSP methods.

A Feature Extraction Method in Iris Image for Biometrics (생체인식을 위한 홍채영상의 특징 추출)

  • Kim Sin-Hong;Cho Yong-Hwan;Kim Tae-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.59-64
    • /
    • 2005
  • The biometrics of iris is a very accurate authentication method. The biometrics of iris can recognize and identify a person for shortly. But the image of iris is changed by transformation of body in the life. The existing iris authentication system has problem that can be mis-recognized. In this paper, we proposed and implemented Renewable Iris Authentication Algorithm(RIAA) for biometrics in authentication system. This algorithm tries to present a new way to people identification, we show contour line when shift take photograph in regular side. Namely, it generate iris code based on boundary of projection or submergence side and compared to original, so that it describes iris identification method to people identification.

  • PDF

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

Local Similarity based Discriminant Analysis for Face Recognition

  • Xiang, Xinguang;Liu, Fan;Bi, Ye;Wang, Yanfang;Tang, Jinhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4502-4518
    • /
    • 2015
  • Fisher linear discriminant analysis (LDA) is one of the most popular projection techniques for feature extraction and has been widely applied in face recognition. However, it cannot be used when encountering the single sample per person problem (SSPP) because the intra-class variations cannot be evaluated. In this paper, we propose a novel method called local similarity based linear discriminant analysis (LS_LDA) to solve this problem. Motivated by the "divide-conquer" strategy, we first divide the face into local blocks, and classify each local block, and then integrate all the classification results to make final decision. To make LDA feasible for SSPP problem, we further divide each block into overlapped patches and assume that these patches are from the same class. To improve the robustness of LS_LDA to outliers, we further propose local similarity based median discriminant analysis (LS_MDA), which uses class median vector to estimate the class population mean in LDA modeling. Experimental results on three popular databases show that our methods not only generalize well SSPP problem but also have strong robustness to expression, illumination, occlusion and time variation.

Development of an EMG-Based Car Interface Using Artificial Neural Networks for the Physically Handicapped (신경망을 적용한 지체장애인을 위한 근전도 기반의 자동차 인터페이스 개발)

  • Kwak, Jae-Kyung;Jeon, Tae-Woong;Park, Hum-Yong;Kim, Sung-Jin;An, Kwang-Dek
    • Journal of Information Technology Services
    • /
    • v.7 no.2
    • /
    • pp.149-164
    • /
    • 2008
  • As the computing landscape is shifting to ubiquitous computing environments, there is increasingly growing the demand for a variety of device controls that react to user's implicit activities without excessively drawing user attentions. We developed an EMG-based car interface that enables the physically handicapped to drive a car using their functioning peripheral nerves. Our method extracts electromyogram signals caused by wrist movements from four places in the user's forearm and then infers the user's intent from the signals using multi-layered neural nets. By doing so, it makes it possible for the user to control the operation of car equipments and thus to drive the car. It also allows the user to enter inputs into the embedded computer through a user interface like an instrument LCD panel. We validated the effectiveness of our method through experimental use in a car built with the EMG-based interface.

Universal Quantification by Children (보편 양화사 (Universal Quantifier)에 대한 아동들의 해석 양상)

  • 강혜경
    • Language and Information
    • /
    • v.5 no.2
    • /
    • pp.39-55
    • /
    • 2001
  • This paper investigates the idiosyncratic understanding of universal quantifiers such as every, each or all by young children at the ages of 4 to 7, and argues that the phenomenon is explicable in terms of the maturation of both the cognitive system and the linguistic system. Evidence for this dual explanation comes from the fact that the visual input, a picture, plays a key role in determining the children's conceptual representation, suggesting the need for the central integration of visual and linguistic elements; and from the fact that a quantifier in the linguistic input has an intrinsic property, i.e. a <+focus> feature. I have tried to explain the nature of the cognitive factors in terms of the function of the central system, suggesting a modified form of Smith & Tsimpli's (1995) yersion of Fodor's (1983) modularity hypothesis. The categorial status of the quantifier in the children's interpretation is considered, focusing on the movement of that quantifier out of its own extended projection to FP. It is claimed that children initially treat quantifiers as modifiers, rather than functional heads, and that the phenomenon of quantifier spreading by children can be attributed to delay in the development of the relevant functional category, i.e., DP (or QP), in language acquisition.

  • PDF

Feature-Based Panoramic Background Generation for Object Tracking in Dynamic Video (가변시점 비디오 객체추적을 위한 특징점 기반 파노라마 배경 생성)

  • Im, Jae-Hyun;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.108-116
    • /
    • 2008
  • In this paper, we propose the algorithm for making panoramic background and object tacking using pan-tilt-zoom camera. We draw an analogy relation between images for cylinder projection, rearrange of images, stitching, and blending. We can then make the panoramic background, and can track the object use the panoramic background. After generated the background, the proposed algorithm tracks the moving object. Therefore it can detect the wide area, and it tracks the object continuously. So the proposed algorithm is able to use at wide area to detect and track the object.

Image-based Realistic Facial Expression Animation

  • Yang, Hyun-S.;Han, Tae-Woo;Lee, Ju-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.133-140
    • /
    • 1999
  • In this paper, we propose a method of image-based three-dimensional modeling for realistic facial expression. In the proposed method, real human facial images are used to deform a generic three-dimensional mesh model and the deformed model is animated to generate facial expression animation. First, we take several pictures of the same person from several view angles. Then we project a three-dimensional face model onto the plane of each facial image and match the projected model with each image. The results are combined to generate a deformed three-dimensional model. We use the feature-based image metamorphosis to match the projected models with images. We then create a synthetic image from the two-dimensional images of a specific person's face. This synthetic image is texture-mapped to the cylindrical projection of the three-dimensional model. We also propose a muscle-based animation technique to generate realistic facial expression animations. This method facilitates the control of the animation. lastly, we show the animation results of the six represenative facial expressions.

On low cost model-based monitoring of industrial robotic arms using standard machine vision

  • Karagiannidisa, Aris;Vosniakos, George C.
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.81-99
    • /
    • 2014
  • This paper contributes towards the development of a computer vision system for telemonitoring of industrial articulated robotic arms. The system aims to provide precision real time measurements of the joint angles by employing low cost cameras and visual markers on the body of the robot. To achieve this, a mathematical model that connects image features and joint angles was developed covering rotation of a single joint whose axis is parallel to the visual projection plane. The feature that is examined during image processing is the varying area of given circular target placed on the body of the robot, as registered by the camera during rotation of the arm. In order to distinguish between rotation directions four targets were used placed every $90^{\circ}$ and observed by two cameras at suitable angular distances. The results were deemed acceptable considering camera cost and lighting conditions of the workspace. A computational error analysis explored how deviations from the ideal camera positions affect the measurements and led to appropriate correction. The method is deemed to be extensible to multiple joint motion of a known kinematic chain.