• 제목/요약/키워드: feature points

검색결과 1,124건 처리시간 0.033초

컨볼루셔널 신경망과 케스케이드 안면 특징점 검출기를 이용한 얼굴의 특징점 분류 (Facial Point Classifier using Convolution Neural Network and Cascade Facial Point Detector)

  • 유제훈;고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.241-246
    • /
    • 2016
  • Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.

의료영상 이미지를 이용한 유전병변 정합 알고리즘 (Genetic lesion matching algorithm using medical image)

  • 조영복;우성희;이상호;한창수
    • 한국정보통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.960-966
    • /
    • 2017
  • 제안 논문에서는 의료영상 이미지를 입력받아 병변 추출이 가능한 알고리즘을 제안한다. 의료영상 이미지의 병변을 추출하기 위해 SIFT 알고리즘을 이용해 특징점들을 추출한다. 특징점의 강도를 높이기 위해 벡터 유사도를 이용해 입력 영상과 병변이미지를 정합하고 병변을 추출한다. 벡터 유사도 정합을 통해 빠르게 병변을 도출할 수 있다. 국소적인 특징점 쌍으로부터 방향 벡터를 생성하기 때문에 방향 자체는 국소적인 특징만을 나타내지만 두 영상 간에 존재하는 다른 벡터들 간의 유사도를 비교하고 전역적인 특징으로 확장될 수 있는 장점을 갖는다. 또한 병변 정합 오류율은 평균 1.02%, 처리속도는 특징점 강도 정보를 사용하지 않을 때보다 약 40%가 향상됨을 실험을 통해 보였다.

시불변 특징점 추출 및 정합을 이용한 주기 신호의 길이 보정 기법 (A Method to Adjust Cyclic Signal Length Using Time Invariant Feature Point Extraction and Matching(TIFEM))

  • 한아향;박정술;김성식;백준걸
    • 한국시뮬레이션학회논문지
    • /
    • 제19권4호
    • /
    • pp.111-122
    • /
    • 2010
  • 본 연구에서는 여러 제조 공정에서 발생하는 주기 신호의 불규칙한 길이를 보정하기 위하여 시불변 특징점 추출 및 정합(Time Invariant Feature point Extraction and Matching, 이하 TIFEM)을 이용한 길이보정 알고리즘을 제안한다. 신호 중간에 길이 변동이 발생 하는 주기신호의 경우 정확하게 길이를 보정하기 위해서는 더 많은 수의 특징점이 필요하며, 추출된 특징점은 신호의 패턴 정보를 포함하고 시간과 크기에 불변한 성질을 가져야 한다. 본 연구에서 제안하는 TIFEM알고리즘은 위의 성질을 가지는 신호 고유의 특성을 추출하고 추출한 특성들을 각각 시점에 해당하는 특성 벡터로 구성한다. 구성된 특성 벡터에서 유효한 벡터만을 걸러내어 길이보정을 위한 특징점으로 선정한다. 선정된 특징점들을 정합한 후 구간별로 길이를 보정하여 보다 정확한 주기 신호의 길이보정을 수행한다. 제안한 알고리즘의 성능을 검증하기 위하여 실제 반도체 공정에서 발생되는 3종류의 신호를 모방하여 생성한 실험데이터를 이용하여 실험을 수행하였다.

SIFT 와 SURF 알고리즘의 성능적 비교 분석 (Comparative Analysis of the Performance of SIFT and SURF)

  • 이용환;박제호;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제12권3호
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

레거시 어플리케이션 제품군으로부터 제품라인 자산을 추출하는 휘처 기반의 방법 (A Feature-Oriented Method for Extracting a Product Line Asset from a Family of Legacy Applications)

  • 이혜선;이강복
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권7호
    • /
    • pp.337-352
    • /
    • 2017
  • 복제 및 소유(Clone-and-own) 재사용은 기존의 소프트웨어 제품을 복사하고 수정하여 새로운 소프트웨어를 개발하는 방법이다. 복제 및 소유 재사용으로 개발된 레거시 소프트웨어 제품군은 일반적으로 리팩토링 없이 패치 업 되고 구조적으로 저하되기 때문에 높은 유지보수 비용을 필요로 하고 오류가 발생하기 쉬운 경향이 있다. 기존에 복제 및 소유 재사용 방법을 사용했던 많은 회사들이 이러한 문제를 해결하고 소프트웨어 자산을 더 체계적으로 재사용하고 관리하기 위하여 레거시 제품들을 소프트웨어 제품라인으로 전환하려고 하고 있다. 하지만 대부분의 기존 방법들은 가변점(Variation points)을 디자인과 코드로부터 분리해서 모델링하고 관리하지 않고 디자인과 코드에 바로 임베드시킨다. 즉, 가변점이 가변성 모델을 기반으로 체계적으로 생성되고 관리되지 않는다. 이러한 기존 방법들은 다음의 문제를 야기한다. 기존 방법에서는 가변점 간 관계를 이해하기가 어렵기 때문에 가변점이 임베드 된 코드를 유지보수하기가 어렵고 코드가 변경 및 진화될 때 오류가 생기기 쉽다. 또한 소프트웨어 제품라인이 진화할 때 디자인/코드 자산이 적합한 리팩토링을 적용하여 체계적으로 변경되는 것이 아니라, 애드 혹(Ad-hoc) 방식으로 직접적으로 변경되는 경향이 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 레거시 어플리케이션 제품군으로부터 소프트웨어 제품라인 자산을 구축하는 휘처 기반의 방법을 제안한다. 제안하는 방법에서는 가변점과 가변점 간 관계를 식별하고 이들을 구현으로부터 분리하여 휘처 모델로 모델링한다. 그리고 휘처 모델을 기반으로 레거시 어플리케이션으로부터 소프트웨어 제품라인 자산을 추출하고 관리한다. 제안하는 방법을 레거시 Notepad++ 제품군에 적용을 하여 방법의 실행가능성을 검증하였다.

가우시안 가중치 거리지도를 이용한 PET-CT 뇌 영상정합 (Co-registration of PET-CT Brain Images using a Gaussian Weighted Distance Map)

  • 이호;홍헬렌;신영길
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권7호
    • /
    • pp.612-624
    • /
    • 2005
  • 본 논문에서는 PET-CT 뇌 영상융합을 위해 가우시안 가중치 거리지도를 이용한 표면기반 영상정합을 제안한다. 제안방법은 중요 세 단계로 표면 특징점 추출, 가우시안 가중치 거리지도 생성, 가중치기반 유사도 평가로 구성된다. 첫째, PET 영상과 CT 영상에서 삼차원 역 영역성장법을 이용하여 머리영역을 분할하고 머리 영역과 같이 분할된 잡음 영역을 영역성장법기반 레이블링을 이용한 영역 크기 비교를 통해 제거한 후 선명화 처리 필터를 적용하여 머리 표면 특징점을 추출한다. 둘째, CT 영상에서 추출한 표면 특징점에 가우시안 가중치 거리지도를 생성하여 큰 변위에서도 최적의 위치로 견고하게 수렴하도록 한다. 셋째, 가중치기반 상호상관관계는 PET 영상에서 추출한 표면 특징점과 대응되는 CT 영상의 가우시안 가중치 거리지도를 이용하여 최적 위치를 탐색한다. 본 논문에서는 제안방법의 정확성과 견고성 검사를 위해 인공데이타를 이용하고, 수행시간과 육안평가를 위해 임상데이타를 이용한다. 정확성 검사는 임의로 변환된 인공데이타에 제안방법을 적용한 후 추출된 최적화 변환벡터와의 오차를 제곱근평균제곱오차를 이용하여 평가한다. 견고성 검사는 큰 변위와 잡음을 가지는 인공데이타에서 가중치기반 상호상관관계가 최적의 위치에서 최대를 이루는지를 평가한다 실험 결과 제안한 표면기반 영상정합이 기존 표면기반 영상정합보다 정확하고 견고하게 수렴됨을 알 수 있다.

방향성 특징벡터를 이용한 스테레오 정합 기법 (Stereo Matching Method using Directional Feature Vector)

  • 문창기;전종현;예철수
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.52-57
    • /
    • 2007
  • In this paper we proposed multi-directional matching windows combined by multi-dimensional feature vector matching, which uses not only intensity values but also multiple feature values, such as variance, first and second derivative of pixels. Multi-dimensional feature vector matching has the advantage of compensating the drawbacks of area-based stereo matching using one feature value, such as intensity. We define matching cost of a pixel by the minimum value among eight multi-dimensional feature vector distances of the pixels expanded in eight directions having the interval of 45 degrees. As best stereo matches, we determine the two points with the minimum matching cost within the disparity range. In the experiment we used aerial imagery and IKONOS satellite imagery and obtained more accurate matching results than that of conventional matching method.

Linear Feature Simplification Using Wavelets in GIS

  • Liang, Chen;Lee, Chung-Ho;Kim, Jae-Hong;Bae, Hae-Young
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.151-153
    • /
    • 2001
  • Feature Simplification is an essential method for multiple representations of spatial features in GIS. However, spatial features re various, complex and a alrge size. Among spatial features which describe spatial information. linear feature is the msot common. Therefore, an efficient linear feature simplification method is most critical for spatial feature simplification in GIS. This paper propose an original method, by which the problem of linear feature simplification is mapped into the signal processing field. This method avoids conventional geometric computing in existing methods and exploits the advantageous properties of wavelet transform. Experimental results are presented to show that the proposed method outperforms the existing methods and achieves the time complexity of O(n), where n is the number of points of a linear feature. Furthermore, this method is not bound to two-dimension but can be extended to high-dimension space.

  • PDF

동적계획법을 이용한 효율적인 차량 추적 시스템에 관한 연구 (A Study on Efficient Vehicle Tracking System using Dynamic Programming Method)

  • 권희철
    • 디지털융복합연구
    • /
    • 제13권12호
    • /
    • pp.209-215
    • /
    • 2015
  • 차량 등 객체를 추적하기 위한 많은 알고리즘들이 있지만 본 논문에서 제안하는 특징점 정합 알고리즘 분야는 지수 복잡도의 시간이 걸리는 작업이다. 더구나, 차량을 추적하기 위해 기존에 제안되었던 객체 추출 등 영상 전처리 알고리즘 또한 상당한 시간을 요구한다. 따라서 본 논문에서는 도로상에서 많은 차량들의 이동 궤적을 빠르고 효율적으로 추적하기 위한 방법을 2단계로 제안한다. 1단계로 객체 탐지가 아닌 번호판 영역을 먼저 탐지한 후 특징점을 추출하는 단계하고, 2단계로 특징점들을 정합하기 위한 비용산정식을 구한 후 동적계획법을 이용하여 효율적으로 차량을 추적할 수 있는 방법을 제안한다.

Improvement Scheme of Airborne LiDAR Strip Adjustment

  • Lee, Dae Geon;Lee, Dong-Cheon
    • 한국측량학회지
    • /
    • 제36권5호
    • /
    • pp.355-369
    • /
    • 2018
  • LiDAR (Light Detection And Ranging) strip adjustment is process to improve geo-referencing of the ALS (Airborne Laser Scanner) strips that leads to seamless LiDAR data. Multiple strips are required to collect data over the large areas, thus the strips are overlapped in order to ensure data continuity. The LSA (LiDAR Strip Adjustment) consists of identifying corresponding features and minimizing discrepancies in the overlapping strips. The corresponding features are utilized as control features to estimate transformation parameters. This paper applied SURF (Speeded Up Robust Feature) to identify corresponding features. To improve determination of the corresponding feature, false matching points were removed by applying three schemes: (1) minimizing distance of the SURF feature vectors, (2) selecting reliable matching feature with high cross-correlation, and (3) reflecting geometric characteristics of the matching pattern. In the strip adjustment procedure, corresponding points having large residuals were removed iteratively that could achieve improvement of accuracy of the LSA eventually. Only a few iterations were required to reach reasonably high accuracy. The experiments with simulated and real data show that the proposed method is practical and effective to airborne LSA. At least 80 % accuracy improvement was achieved in terms of RMSE (Root Mean Square Error) after applying the proposed schemes.