• Title/Summary/Keyword: feature point

Search Result 1,351, Processing Time 0.024 seconds

Sparse Point Representation Based on Interpolation Wavelets (보간 웨이블렛 기반의 Sparse Point Representation)

  • Park, Jun-Pyo;Lee, Do-Hyung;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.8-15
    • /
    • 2006
  • A Sparse Point Representation(SPR) based on interpolation wavelets is presented. The SPR is implemented for the purpose of CFD data compression. Unlike conventional wavelet transformation, the SPR relieves computing workload in the similar fashion of lifting scheme that includes splitting and prediction procedures in sequence. However, SPR skips update procedure that is major part of lifting scheme. Data compression can be achieved by proper thresholding method. The advantage of the SPR method is that, by keeping even point physical values, low frequency filtering procedure is omitted and its related unphysical thresholing mechanism can be avoided in reconstruction process. Extra singular feature detection algorithm is implemented for preserving singular features such as shock and vortices. Several numerical tests show the adequacy of SPR for the CFD data. It is also shown that it can be easily extended to nonlinear adaptive wavelets for enhanced feature capturing.

A Study on Feature Point Detection Algorithm in Radial Pulse (맥파 특징점 검출 알고리즘에 관한 연구)

  • Han, S.C.;Lee, Y.D.;Cho, B.S.;Park, Y.B.;Huh, W.
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.207-209
    • /
    • 2000
  • In this paper, we developed a feature point detection algorithm that detects upstroke point(S), peak point(P), incisura(C) point from radial pulse waveform which obtained by using the developed radial pulse transducer. As the results of experiment the three kinds of parameters can extracted with effectively from normal radial pulse waveform.

  • PDF

Automatic salient-object extraction using the contrast map and salient point (Contrast map과 Salient point를 이용한 중요객체 자동추출)

  • 곽수영;고병철;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.808-810
    • /
    • 2004
  • 본 논문에서는 Contrast map과 Salient point를 이용하여 영상에서 중요한 객체를 자동으로 추출하는 방법을 제안한다. 우선 인간의 시각 체계와 유사한 밝기(luminance), 색상(color) 그리고 방향성(orientation) 3가지의 특징정보를 이용하여 각각의 특징정보로부터 feature map을 생성하고 이 3가지의 feature map을 선형 결합하여 contrast map을 생성한다. 이렇게 생성된 하나의 contrast map을 이용하여 대략적인 Attention Window (AW)의 위치를 결정한다. 다음으로, 영상으로부터 웨이블릿 변환을 적용하여 salient point를 찾고, salient point의 분포와 contrast map의 중요도에 따라 AW의 크기를 실제 중요 객체의 크기와 가장 유사하도록 축소시킨다. 이렇게 선택되고 축소된 AW안에서 실제 중요 객체를 추출하기 위해 AW 내부에 존재하는 영상에 대해서만 영상 분할을 하고 불필요한 영역을 제거하여 자동으로 중요객체를 추출하도록 한다.

  • PDF

Comparison of Feature Point Extraction Algorithms Using Unmanned Aerial Vehicle RGB Reference Orthophoto (무인항공기 RGB 기준 정사영상을 이용한 특징점 추출 알고리즘 비교)

  • Lee, Kirim;Seong, Jihoon;Jung, Sejung;Shin, Hyeongil;Kim, Dohoon;Lee, Wonhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.263-270
    • /
    • 2024
  • As unmanned aerial vehicles(UAVs) and sensors have been developed in a variety of ways, it has become possible to update information on the ground faster than existing aerial photography or remote sensing. However, acquisition and input of ground control points(GCPs) UAV photogrammetry takes a lot of time, and geometric distortion occurs if measurement and input of GCPs are incorrect. In this study, RGB-based orthophotos were generated to reduce GCPs measurment and input time, and comparison and evaluation were performed by applying feature point algorithms to target orthophotos from various sensors. Four feature point extraction algorithms were applied to the two study sites, and as a result, speeded up robust features(SURF) was the best in terms of the ratio of matching pairs to feature points. When compared overall, the accelerated-KAZE(AKAZE) method extracted the most feature points and matching pairs, and the binary robust invariant scalable keypoints(BRISK) method extracted the fewest feature points and matching pairs. Through these results, it was confirmed that the AKAZE method is superior when performing geometric correction of the objective orthophoto for each sensor.

Image Retrieval using Local Color Histogram and Shape Feature (지역별 색상 분포 히스토그램과 모양 특징을 이용한 영상 검색)

  • 정길선;김성만;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.50-54
    • /
    • 1999
  • This paper is proposed to image retrieval system using color and shape feature. Color feature used to four maximum value feature among the maximum value extracted from local color distribution histogram. The preprocessing of shape feature consist of edge extraction and weight central point extraction and angular sampling. The sum of distance from weight central point to contour and variation and max/min used to shape feature. The similarity is estimated compare feature of query image with the feature of images in database and the candidate of image is retrieved in order of similarity. We evaluate the effectiveness of shape feature and color feature in experiment used to two hundred of the closed image. The Recall and the Precision is each 0.72 and 0.53 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

Pseudo Feature Point Removal using Pixel Connectivity Tracing (픽셀 연결성 추적을 이용한 의사 특징점 제거)

  • Kim, Kang;Lee, Keon-Ik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.95-101
    • /
    • 2011
  • In this paper, using pixel connectivity tracking feature to remove a doctor has been studied. Feature extraction method is a method using the crossing. However, by crossing a lot of feature extraction method sis a doctor. Extracted using the method of crossing the wrong feature to remove them from the downside and the eight pixels around the fork to trace if it satisfies the conditions in the actual feature extraction and feature conditions are not satisfied because the doctor was removed. To evaluate the performance using crossing methods and extracted using pixel connectivity trace was compared to the actual feature, the experimental results using pixel connectivity trace arcuate sentence, croissants sentence, sentence the defrost feature on your doctor about47%, respectively, 40%, 30%were found to remove.

Extended SURF Algorithm with Color Invariant Feature and Global Feature (컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.58-67
    • /
    • 2009
  • A correspondence matching is one of the important tasks in computer vision, and it is not easy to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. A SURF(Speeded Up Robust Features) algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform) with closely maintaining the matching performance. However, because SURF considers only gray image and local geometric information, it is difficult to match corresponding points on the image where similar local patterns are scattered. In order to solve this problem, this paper proposes an extended SURF algorithm that uses the invariant color and global geometric information. The proposed algorithm can improves the matching performance since the color information and global geometric information is used to discriminate similar patterns. In this paper, the superiority of the proposed algorithm is proved by experiments that it is compared with conventional methods on the image where an illumination and a view point are changed and similar patterns exist.

Image Feature Extraction Using Independent Component Analysis of Hybrid Fixed Point Algorithm (조합형 Fixed Point 알고리즘의 독립성분분석을 이용한 영상의 특징추출)

  • Cho, Yong-Hyun;Kang, Hyun-Koo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • This paper proposes an efficient feature extraction of the images by using independent component analysis(ICA) based on neural networks of the hybrid learning algorithm. The proposed learning algorithm is the fixed point(FP) algorithm based on Newton method and moment. The Newton method, which uses to the tangent line for estimating the root of function, is applied for fast updating the inverse mixing matrix. The moment is also applied for getting the better speed-up by restraining an oscillation due to compute the tangent line. The proposed algorithm has been applied to the 10,000 image patches of $12{\times}12$-pixel that are extracted from 13 natural images. The 144 features of $12{\times}12$-pixel and the 160 features of $16{\times}16$-pixel have been extracted from all patches, respectively. The simulation results show that the extracted features have a localized characteristics being included in the images in space, as well as in frequency and orientation. And the proposed algorithm has better performances of the learning speed than those using the conventional FP algorithm based on Newton method.

  • PDF

An Efficient Feature Point Detection for Interactive Pen-Input Display Applications (인터액티브 펜-입력 디스플레이 애플리케이션을 위한 효과적인 특징점 추출법)

  • Kim Dae-Hyun;Kim Myoung-Jun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.705-716
    • /
    • 2005
  • There exist many feature point detection algorithms that developed in pattern recognition research . However, interactive applications for the pen-input displays such as Tablet PCs and LCD tablets have set different goals; reliable segmentation for different drawing styles and real-time on-the-fly fieature point defection. This paper presents a curvature estimation method crucial for segmenting freeHand pen input. It considers only local shape descriptors, thus, peforming a novel curvature estimation on-the-fly while drawing on a pen-input display This has been used for pen marking recognition to build a 3D sketch-based modeling application.

Object Recognition Using Hausdorff Distance and Image Matching Algorithm (Hausdorff Distance와 이미지정합 알고리듬을 이용한 물체인식)

  • Kim, Dong-Gi;Lee, Wan-Jae;Gang, Lee-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.841-849
    • /
    • 2001
  • The pixel information of the object was obtained sequentially and pixels were clustered to a label by the line labeling method. Feature points were determined by finding the slope for edge pixels after selecting the fixed number of edge pixels. The slope was estimated by the least square method to reduce the detection error. Once a matching point was determined by comparing the feature information of the object and the pattern, the parameters for translation, scaling and rotation were obtained by selecting the longer line of the two which passed through the matching point from left and right sides. Finally, modified Hausdorff Distance has been used to identify the similarity between the object and the given pattern. The multi-label method was developed for recognizing the patterns with more than one label, which performs the modified Hausdorff Distance twice. Experiments have been performed to verify the performance of the proposed algorithm and method for simple target image, complex target image, simple pattern, and complex pattern as well as the partially hidden object. It was proved via experiments that the proposed image matching algorithm for recognizing the object had a good performance of matching.