• 제목/요약/키워드: feature generation

Search Result 615, Processing Time 0.028 seconds

A Study on Human Training System for Prosthetic Arm Control (의수제어를 위한 인체학습시스템에 관한 연구)

  • 장영건;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.465-474
    • /
    • 1994
  • This study is concerned with a method which helps human to generate EMG signals accurately and consistently to make reliable design samples of function discriminator for prosthetic arm control. We intend to ensure a signal accuracy and consistency by training human as a signal generation source. For the purposes, we construct a human training system using a digital computer, which generates visual graphes to compare real target motion trajectory with the desired one, to observe EMG signals and their features. To evaluate the effect which affects a feature variance and a feature separability between motion classes by the human training system, we select 4 features such as integral absolute value, zero crossing counts, AR coefficients and LPC cepstrum coefficients. We perform a experiment four times during 2 months. The experimental results show that the hu- man training system is effective for accurate and consistent EMG signal generation and reduction of a feature variance, but is not correlated for a feature separability, The cepstrum coefficient is the most preferable among the used features for reduction of variance, class separability and robustness to a time varing property of EMG signals.

  • PDF

Generation of Natural Referring Expressions by Syntactic Information and Cost-based Centering Model (구문 정보와 비용기반 중심화 이론에 기반한 자연스러운 지시어 생성)

  • Roh Ji-Eun;Lee Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1649-1659
    • /
    • 2004
  • Text Generation is a process of generating comprehensible texts in human languages from some underlying non-linguistic representation of information. Among several sub-processes for text generation to generate coherent texts, this paper concerns referring expression generation which produces different types of expressions to refer to previously-mentioned things in a discourse. Specifically, we focus on pronominalization by zero pronouns which frequently occur in Korean. To build a generation model of referring expressions for Korean, several features are identified based on grammatical information and cost-based centering model, which are applied to various machine learning techniques. We demonstrate that our proposed features are well defined to explain pronominalization, especially pronominalization by zero pronouns in Korean, through 95 texts from three genres - Descriptive texts, News, and Short Aesop's Fables. We also show that our model significantly outperforms previous ones with a 99.9% confidence level by a T-test.

A feature data model in milling process planning (밀링 공정설계의 특징형상 데이터 모델)

  • Lee, Choong-Soo;Rho, Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.209-216
    • /
    • 1997
  • A feature is well known as a medium to integrate CAD, CAPP and CAM systems. For a part drawing including both simple geometry and compound geometry, a process plan such as the selection of process, machine tool, cutting tool etc. normally needs simple geometry data and non-geometry data of the feature as the input. However, a extended process plan such as the generation of process sequence, operation sequence, jig & fixture, NC program etc. necessarily needs the compound geometry data as well as the simple geometry data and non-geometry data. In this paper, we propose a feature data model according to the result of analyzing necessary data, including the compound geometry data, the simple geometry data and the non-geometry data. Also, an example of the feature data model in milling process planning is described.

Feature curve extraction from point clouds via developable strip intersection

  • Lee, Kai Wah;Bo, Pengbo
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper, we study the problem of computing smooth feature curves from CAD type point clouds models. The proposed method reconstructs feature curves from the intersections of developable strip pairs which approximate the regions along both sides of the features. The generation of developable surfaces is based on a linear approximation of the given point cloud through a variational shape approximation approach. A line segment sequencing algorithm is proposed for collecting feature line segments into different feature sequences as well as sequential groups of data points. A developable surface approximation procedure is employed to refine incident approximation planes of data points into developable strips. Some experimental results are included to demonstrate the performance of the proposed method.

Speed-up of Image Matching Using Feature Strength Information (특징 강도 정보를 이용한 영상 정합 속도 향상)

  • Kim, Tae-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.63-69
    • /
    • 2013
  • A feature-based image recognition method, using features of an object, can be performed faster than a template matching technique. Invariant feature-based panoramic image generation, an application of image recognition, requires large amount of time to match features between two images. This paper proposes a speed-up method of feature matching using feature strength information. Our algorithm extracts features in images, computes their feature strength information, and selects strong features points which are used to match the selected features. The strong features can be referred to as meaningful ones than the weak features. In the experiments, it was shown that our method speeded up over 40% of processing time than the technique without using feature strength information.

A Feasibility Study on RUNWAY GEN-2 for Generating Realistic Style Images

  • Yifan Cui;Xinyi Shan;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.99-105
    • /
    • 2024
  • Runway released an updated version, Gen-2, in March 2023, which introduced new features that are different from Gen-1: it can convert text and images into videos, or convert text and images together into video images based on text instructions. This update will be officially open to the public in June 2023, so more people can enjoy and use their creativity. With this new feature, users can easily transform text and images into impressive video creations. However, as with all new technologies, comes the instability of AI, which also affects the results generated by Runway. This article verifies the feasibility of using Runway to generate the desired video from several aspects through personal practice. In practice, I discovered Runway generation problems and propose improvement methods to find ways to improve the accuracy of Runway generation. And found that although the instability of AI is a factor that needs attention, through careful adjustment and testing, users can still make full use of this feature and create stunning video works. This update marks the beginning of a more innovative and diverse future for the digital creative field.

Parallelizing Feature Point Extraction in the Multi-Core Environment for Reducing Panorama Image Generation Time (파노라마 이미지 생성시간을 단축하기 위한 멀티코어 환경에서 특징점 추출 병렬화)

  • Kim, Geon-Ho;Choi, Tai-Ho;Chung, Hee-Jin;Kwon, Bom-Jun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.331-335
    • /
    • 2008
  • In this paper, we parallelized a feature point extraction algorithm to reduce panorama image generation time in multi-core environment. While we compose a panorama image with several images, the step to extract feature points of each picture is needed to find overlapped region of pictures. To perform rapidly feature extraction stage which requires much calculation, we developed a parallel algorithm to extract feature points and examined the performance using CBE(Cell Broadband Engine) which is asymmetric multi-core architecture. As a result of the exam, the algorithm we proposed has a property of linear scalability-the performance is increased in proportion the number of processors utilized. In this paper, we will suggest how Image processing operation can make high performance result in multi-core environment.

Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution (단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.