• Title/Summary/Keyword: feature extraction, and classification

Search Result 664, Processing Time 0.024 seconds

Anomaly Detection In Real Power Plant Vibration Data by MSCRED Base Model Improved By Subset Sampling Validation (Subset 샘플링 검증 기법을 활용한 MSCRED 모델 기반 발전소 진동 데이터의 이상 진단)

  • Hong, Su-Woong;Kwon, Jang-Woo
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • This paper applies an expert independent unsupervised neural network learning-based multivariate time series data analysis model, MSCRED(Multi-Scale Convolutional Recurrent Encoder-Decoder), and to overcome the limitation, because the MCRED is based on Auto-encoder model, that train data must not to be contaminated, by using learning data sampling technique, called Subset Sampling Validation. By using the vibration data of power plant equipment that has been labeled, the classification performance of MSCRED is evaluated with the Anomaly Score in many cases, 1) the abnormal data is mixed with the training data 2) when the abnormal data is removed from the training data in case 1. Through this, this paper presents an expert-independent anomaly diagnosis framework that is strong against error data, and presents a concise and accurate solution in various fields of multivariate time series data.

Social Network Spam Detection using Recursive Structure Features (소셜 네트워크 상에서의 재귀적 네트워크 구조 특성을 활용한 스팸탐지 기법)

  • Jang, Boyeon;Jeong, Sihyun;Kim, Chongkwon
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1231-1235
    • /
    • 2017
  • Given the network structure in online social network, it is important to determine a way to distinguish spam accounts from the network features. In online social network, the service provider attempts to detect social spamming to maintain their service quality. However the spammer group changes their strategies to avoid being detected. Even though the spammer attempts to act as legitimate users, certain distinguishable structural features are not easily changed. In this paper, we investigate a way to generate meaningful network structure features, and suggest spammer detection method using recursive structural features. From a result of real-world dataset experiment, we found that the proposed algorithm could improve the classification performance by about 8%.

SVM Classifier for the Detection of Ventricular Fibrillation (SVM 분류기를 통한 심실세동 검출)

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.27-34
    • /
    • 2005
  • Ventricular fibrillation(VF) is generally caused by chaotic behavior of electrical propagation in heart and may result in sudden cardiac death. In this study, we proposed a ventricular fibrillation detection algorithm based on support vector machine classifier, which could offer benefits to reduce the teaming costs as well as good classification performance. Before the extraction of input features, raw ECG signal was applied to preprocessing procedures, as like wavelet transform based bandpass filtering, R peak detection and segment assignment for feature extraction. We selected input features which of some are related to the rhythm information and of others are related to wavelet coefficients that could describe the morphology of ventricular fibrillation well. Parameters for SVM classifier, C and ${\alpha}$, were chosen as 10 and 1 respectively by trial and error experiments. Each average performance for normal sinus rhythm ventricular tachycardia and VF, was 98.39%, 96.92% and 99.88%. And, when the VF detection performance of SVM classifier was compared to that of multi-layer perceptron and fuzzy inference methods, it showed similar or higher values. Consequently, we could find that the proposed input features and SVM classifier would one of the most useful algorithm for VF detection.

Development of a Web-based Presentation Attitude Correction Program Centered on Analyzing Facial Features of Videos through Coordinate Calculation (좌표계산을 통해 동영상의 안면 특징점 분석을 중심으로 한 웹 기반 발표 태도 교정 프로그램 개발)

  • Kwon, Kihyeon;An, Suho;Park, Chan Jung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • In order to improve formal presentation attitudes such as presentation of job interviews and presentation of project results at the company, there are few automated methods other than observation by colleagues or professors. In previous studies, it was reported that the speaker's stable speech and gaze processing affect the delivery power in the presentation. Also, there are studies that show that proper feedback on one's presentation has the effect of increasing the presenter's ability to present. In this paper, considering the positive aspects of correction, we developed a program that intelligently corrects the wrong presentation habits and attitudes of college students through facial analysis of videos and analyzed the proposed program's performance. The proposed program was developed through web-based verification of the use of redundant words and facial recognition and textualization of the presentation contents. To this end, an artificial intelligence model for classification was developed, and after extracting the video object, facial feature points were recognized based on the coordinates. Then, using 4000 facial data, the performance of the algorithm in this paper was compared and analyzed with the case of facial recognition using a Teachable Machine. Use the program to help presenters by correcting their presentation attitude.

The attacker group feature extraction framework : Authorship Clustering based on Genetic Algorithm for Malware Authorship Group Identification (공격자 그룹 특징 추출 프레임워크 : 악성코드 저자 그룹 식별을 위한 유전 알고리즘 기반 저자 클러스터링)

  • Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Recently, the number of APT(Advanced Persistent Threats) attack using malware has been increasing, and research is underway to prevent and detect them. While it is important to detect and block attacks before they occur, it is also important to make an effective response through an accurate analysis for attack case and attack type, these respond which can be determined by analyzing the attack group of such attacks. Therefore, this paper propose a framework based on genetic algorithm for analyzing malware and understanding attacker group's features. The framework uses decompiler and disassembler to extract related code in collected malware, and analyzes information related to author through code analysis. Malware has unique characteristics that only it has, which can be said to be features that can identify the author or attacker groups of that malware. So, we select specific features only having attack group among the various features extracted from binary and source code through the authorship clustering method, and apply genetic algorithm to accurate clustering to infer specific features. Also, we find features which based on characteristics each group of malware authors has that can express each group, and create profiles to verify that the group of authors is correctly clustered. In this paper, we do experiment about author classification using genetic algorithm and finding specific features to express author characteristic. In experiment result, we identified an author classification accuracy of 86% and selected features to be used for authorship analysis among the information extracted through genetic algorithm.

Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring (실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구)

  • Choi, Woo-Chul;Na, Joon-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.546-554
    • /
    • 2019
  • Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.

Energy Minimization Model for Pattern Classification of the Movement Tracks (행동궤적의 패턴 분류를 위한 에너지 최소화 모델)

  • Kang, Jin-Sook;Kim, Jin-Sook;Cha, Eul-Young
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.281-288
    • /
    • 2004
  • In order to extract and analyze complex features of the behavior of animals in response to external stimuli such as toxic chemicals, we implemented an adaptive computational method to characterize changes in the behavior of chironomids in response to treatment with the insecticide, diazinon. In this paper, we propose an energy minimization model to extract the features of response behavior of chironomids under toxic treatment, which is applied on the image of velocity vectors. It is based on the improved active contour model and the variations of the energy functional, which are produced by the evolving active contour. The movement tracks of individual chironomid larvae were continuously measured in 0.25 second intervals during the survey period of 4 days before and after the treatment. Velocity on each sample track at 0.25 second intervals was collected in 15-20 minute periods and was subsequently checked to effectively reveal behavioral states of the specimens tested. Active contour was formed around each collection of velocities to gradually evolve to find the optimal boundaries of velocity collections through processes of energy minimization. The active contour which is improved by T. Chan and L. Vese is used in this paper. The energy minimization model effectively revealed characteristic patterns of behavior for the treatment versus no treatment, and identified changes in behavioral states .is the time progressed.

Application of CSP Filter to Differentiate EEG Output with Variation of Muscle Activity in the Left and Right Arms (좌우 양팔의 근육 활성도 변화에 따른 EEG 출력 구분을 위한 CSP 필터의 적용)

  • Kang, Byung-Jun;Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.654-660
    • /
    • 2020
  • Through the output of brain waves during muscle operation, this paper checks whether it is possible to find characteristic vectors of brain waves that are capable of dividing left and right movements by extracting brain waves in specific areas of muscle signal output that include the motion of the left and right muscles or the will of the user within EEG signals, where uncertainties exist considerably. A typical surface EMG and noninvasive brain wave extraction method does not exist to distinguish whether the signal is a motion through the degree of ionization by internal neurotransmitter and the magnitude of electrical conductivity. In the case of joint and motor control through normal robot control systems or electrical signals, signals that can be controlled by the transmission and feedback control of specific signals can be identified. However, the human body lacks evidence to find the exact protocols between the brain and the muscles. Therefore, in this paper, efficiency is verified by utilizing the results of application of CSP (Common Spatial Pattern) filter to verify that the left-hand and right-hand signals can be extracted through brainwave analysis when the subject's behavior is performed. In addition, we propose ways to obtain data through experimental design for verification, to verify the change in results with or without filter application, and to increase the accuracy of the classification.

Comparative Analysis by Batch Size when Diagnosing Pneumonia on Chest X-Ray Image using Xception Modeling (Xception 모델링을 이용한 흉부 X선 영상 폐렴(pneumonia) 진단 시 배치 사이즈별 비교 분석)

  • Kim, Ji-Yul;Ye, Soo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.547-554
    • /
    • 2021
  • In order to quickly and accurately diagnose pneumonia on a chest X-ray image, different batch sizes of 4, 8, 16, and 32 were applied to the same Xception deep learning model, and modeling was performed 3 times, respectively. As a result of the performance evaluation of deep learning modeling, in the case of modeling to which batch size 32 was applied, the results of accuracy, loss function value, mean square error, and learning time per epoch showed the best results. And in the accuracy evaluation of the Test Metric, the modeling applied with batch size 8 showed the best results, and the precision evaluation showed excellent results in all batch sizes. In the recall evaluation, modeling applied with batch size 16 showed the best results, and for F1-score, modeling applied with batch size 16 showed the best results. And the AUC score evaluation was the same for all batch sizes. Based on these results, deep learning modeling with batch size 32 showed high accuracy, stable artificial neural network learning, and excellent speed. It is thought that accurate and rapid lesion detection will be possible if a batch size of 32 is applied in an automatic diagnosis study for feature extraction and classification of pneumonia in chest X-ray images using deep learning in the future.

Diagnosis of Diabetes Using Voltage Analysis Based on EIS (Electro Interstitial Scan) (EIS 기반 전압신호 분석을 통한 당뇨병 진단 가능성 평가)

  • Bae, Jang-Han;Kim, Soochan;Kaewkannate, Kanitthika;Jun, Min-Ho;Kim, Jaeuk U.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.114-122
    • /
    • 2016
  • EIS (Electro interstitial scan) is a non-invasive and simple method to find the physio-pathological information inferred by electric current response with respect to low direct current applied between remote sites of the body. Although a few EIS-based devices for diagnosing diabetes were commercialized, they were not successful in offering clinical validity nor in confirming diagnostic principle. In this study, we measured the voltage responses of diabetic patients and normal subjects with a commercialized EIS device to test the usefulness of EIS in screening diabetes. For this purpose, voltage was measured between pairs of electrodes contacted at both palm, both soles of the feet and left and right forehead above both eyes. After feature extraction of voltage signals, the AUC (area under the curve) between the two groups was calculated and we found that seven variables were appropriately shown above 60% of accuracy. In addition, we applied the k-NN (k-nearest neighbors) method and found that the accuracy of classification between the two groups reached the accuracy of 76.2%. This result implies that the voltage response analysis based on EIS has potential as a diabetics screening method.