• Title/Summary/Keyword: faults

Search Result 2,946, Processing Time 0.033 seconds

The Contribution of Pre-Existing Structures during the Structural Inversion in Cretaceous Sedimentary Rocks on Geoje Island, SE Korea

  • Francois Hategekimana;Mohammed S. M. Adam;Young-Seog Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.275-290
    • /
    • 2023
  • Structural inversion refers to the reverse reactivation of extensional faults that influence basin shortening accommodated by contractional faults or folds. On the Korean peninsula, Miocene inversion structures have been found, but the Cretaceous rocks on Geoje Island may have undergone inversion as early as the Upper Cretaceous. To evaluate the structural inversion on Geoje Island, located on the eastern side of South Korea, and to determine the effects of preexisting weakness zones, field-based geometric and kinematic analyses of faults were performed. The lithology of Geoje Island is dominated by hornfelsified shale, siltstone, and sandstone in the Upper-Cretaceous Seongpori formation. NE and NW-oblique normal faults, conjugate strike-slip (NW-sinistral transpressional and E-W-dextral transtensional) faults, and NE-dextral transpressional faults are the most prominent structural features in Geoje Island. Structural inversion on Geoje Island was evidenced by the sinistral and dextral transpressional reactivation of the NW and NE-trending oblique normal faults respectively, under WNW-ESE/NW-SE compression, which was the orientation of the compressive stress during the Late Cretaceous to Early Cenozoic.

A Testable PLA's Design for Multiple Faults (다중 고장 테스트가 가능한 PLA의 설계)

  • Lee, Jae-Min;Kim, Eun-Sung;Lim, In-Chil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.666-673
    • /
    • 1986
  • This paper proposes a testable design method of PLA's with low overhead and high fault coverage for multiple faults. Only a shift register and control input of 2-bit decoder are used for extra hardware. By using a control input, the bit lines are controlled effectively. As the fault model, bridging faults and multiple faults of different fault models are particularly considered. 'Fault equivalence relation' and 'dominant faults' are defined to be used for detection of multiple faults. Also, an eadily testable folded PLA by this method is described.

  • PDF

Performace Improvement of Self-Validating Sensors Using Fuzzy Logic (퍼지 논리를 사용한 Self-Validating 센서의 성능 개선)

  • 나승유;배희종
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.349-352
    • /
    • 2000
  • In case of sensor faults, they can be detected by examining the sensor output values and the typical values of the system. And then the types of the faults are recognized by the analysis of symptoms of faults. If necessary self-validating sensor values are synthesized according to the types of faults, and then they are used for the controller instead of the raw data. In this paper, fuzzy logic is introduced in SEVA sensors to improve the system performance. And then the method is applied to the control of a flexible link system with the sensor fault problems for exact positioning to show the applicability.

  • PDF

Geological origin and Structural characteristics of Faults (단층의 지질학적 성인과 구조지질학적 특성)

  • Yoon, Woon-Sang;Rim, Hyoung-Gyu;Jeong, Ui-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.138-146
    • /
    • 2007
  • The 'Fault' has been common interests to the structural geologists, geotechnical engineers and civil engineers. The 'Fault' is very important factor to evaluate to the geotechnical stability. In this paper, geological origin and classification of faults with structural geological features are described. These geological characteristics of faults are useful to understand and detect of faults for engineering practice.

  • PDF

Simultaneous Faults Detection and Isolation Using Null Space Components of Faults for INS Sensor Redundancy

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.32.4-32
    • /
    • 2002
  • We consider inertial navigation system (INS) sensor redundancy and propose a method which uses singular value decomposition to detect and isolate faults when even two sensors have faults simultaneously. When redundant sensor configuration is given, such as symmetric configuration in INS, the range space and null space of configuration matrix are determined. We use null space of configuration matrix and define 21 reference fault vectors which include 6 one-fault vectors and 15 two-fault vectors. Measurements are projected into null space of measurement matrix and compared with 21 normalized reference fault vectors, which determines fault detection and isolation.

  • PDF

Characteristic Analysis of Voltage Sags Due to Faulted Distribution Lines (배전선로 고장에 의한 Voltage Sag의 특성 해석)

  • ;Madhat M. Morcos
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.76-84
    • /
    • 2002
  • Voltage sags caused by line faults in transmission and distribution lines have become one of the most important power quality problems facing industrial customers and utilities. Voltage sags are normally described by characteristics of both magnitude and duration, but phase angle shifts should be taken account in identifying sag phenomena and finding their solutions. In this paper, voltage sags due to line faults such as three phase-to-ground, single line-to-ground, and line-to-line faults are characterized by using symmetrical component analysis, for fault impedance variations. Voltage sags and their effect on the magnitude and phase angle are examined. Balanced sags of three phase-to-ground faults show that voltages and currents are changed with equivalent levels to all phases and the zero sequence components become zero. However, for unbalanced faults such as single line-to-ground and line-to-line faults, voltage sags give different magnitude variations and phase angle shifts for each phase. In order to verify the analyzed results, some simulations based on power circuit models are also discussed.

A study on Identifying Undetectable Faults Using Uninitializable Flip-Flops (초기화가 불가능한 풀립플롭을 이용한 시험 불가능 고장 검출에 관한 연구)

  • Lee, Jae-Hun;Jo, Jin-U
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1371-1379
    • /
    • 1997
  • Undetectable faults in a digital circuit are faults that no input patterms can detect.Identifying these faults in test geferation process is very time- consuming especially for sequential circuits .In this paper we present a new algorithm to identify unedtectable faults in sequential cirouits .In the alorithm. we identify uninitializable fip-flops and then, faults that prevent intialization of the fkip-flops(FPIs)are identified, finally propagation path of the FPI is checked. Time complexity of this algorithm is porportional to the product of the number of flip flops with at lest a self loop and the number of gates in the circuit. Experiments were performed on the ISCAS89 benchmark ciruits to show the feadibility of the proposed algorithm.We could identify large amount of undetectable faults(up to 50% of the number of flip-flops)in circuits with uninitializable flip-flops. Consider-ing that most of the time in test generation is cinsumed in identifying undetecatable faults, performance of test generator can be improved by using this algorithm as a pre-processing of test generation.

  • PDF

Task Scheduling to Minimize the Effect of Coincident Faults in a Duplex Controller Computer (고성능 컴퓨터의 고신뢰도 보장을 위한 이중(Duplex) 시스템의 작업 시퀀싱/스케쥴링 기법 연구)

  • Im, Han-Seung;Kim, Hak-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3124-3130
    • /
    • 1999
  • A duplex system enhances reliability by tolerating faults through spatial redundancy. Faults can be detected by duplicating identical tasks in pairs of modules. However, this kind of systems cannot even detect the fault if it occurs coincidently due to either malfunctions of common component such as power supply and clock or due to such environmental disruption as EMI. In the paper, we propose a method to reduce those effects of coincident faults in the duplex controller computer. Specifically, a duplex system tolerates coincident faults by using a sophistication sequencing of scheduling technique with certain timing redundancy. In particular when all tasks should be completed in the sense of real-time, the suggested scheduling method works properly to minimize the probability of faulty tasks due to coincident fault without missing the timing constraints.

  • PDF

A New Hardening Technique Against Radiation Faults in Asynchronous Digital Circuits Using Double Modular Redundancy (이중화 구조를 이용한 비동기 디지털 시스템의 방사선 고장 극복)

  • Kwak, Seong Woo;Yang, Jung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.625-630
    • /
    • 2014
  • Asynchronous digital circuits working in military and space environments are often subject to the adverse effects of radiation faults. In this paper, we propose a new hardening technique against radiation faults. The considered digital system has the structure of DMR (Double Modular Redundancy), in which two sub-systems conduct the same work simultaneously. Based on the output feedback, the proposed scheme diagnoses occurrences of radiation faults and realizes immediate recovery to the normal behavior by overriding parts of memory bits of the faulty sub-system. As a case study, the proposed control scheme is applied to an asynchronous dual ring counter implemented in VHDL code.

Design and Implementation of a Fault-Tolerant Magnetic Bearing System For Turbo-Molecular Vacuum Pump (터보분자펌프용 고장허용 자기베어링 시스템 설계 및 개발)

  • Cho, Sung-Rak;Noh, Myoung-Gyu;Park, Byung-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.760-765
    • /
    • 2004
  • One of the obstacles for a magnetic bearing to be used in the wide range of industrial applications is the failure modes associated with magnetic bearings, which we don't expect for conventional passive bearings. These failure modes include electric power outage, power amplifier faults, position sensor faults, and the malfunction of controllers. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate in spite of some faults in the system. In this paper, we designed and implemented a fault-tolerant magnetic bearing system for a turbo-molecular vacuum pump. The system can cope with the actuator/amplifier faults as well as the faults in position sensors, which are the two major fault modes in a magnetic bearing system.

  • PDF