• Title/Summary/Keyword: fault-detection rate

Search Result 96, Processing Time 0.025 seconds

Variable Dynamic Threshold Method for Video Cut Detection (동영상 컷 검출을 위한 가변형 동적 임계값 기법)

  • 염성주;김우생
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4A
    • /
    • pp.356-363
    • /
    • 2002
  • Video scene segmentation is fundamental role for content based video analysis and many kinds of scene segmentation schemes have been proposed in previous researches. However, there is a problem, which is to find optimal threshold value according to various kinds of movies and its content because only fixed single threshold value usually used for cut detection. In this paper, we proposed the variable dynamic threshold method, which change the threshold value by a probability distribution of cut detection interval and information of frame feature differences and cut detection interval in previous cut detection is used to determine the next cut detection. For this, we present a cut detection algorithm and a parameter generation method to change the threshold value in runtime. We also show the proposed method, which can minimize fault alarm rate than the existing methods efficiently by experimental results.

Sensor Failure Detection and Accommodation Based on Neural Networks (신경회로망을 이용한 센서 고장진단 및 극복)

  • 이균정;이봉기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.82-91
    • /
    • 1998
  • This paper presents a neural networks based approach for the problem of sensor failure detection and accommodation for ship without physical redundancy in the sensors. The designed model consists of two neural networks. The first neural network is responsible for the failure detection and the second neural network is responsible for the failure identification and accommodation. On the yaw rate sensor of ship, simulation results indicates that the proposed method can be useful as failure detector and sensor estimator.

  • PDF

The Use of Local Outlier Factor(LOF) for Improving Performance of Independent Component Analysis(ICA) based Statistical Process Control(SPC) (LOF를 이용한 ICA 기반 통계적 공정관리의 성능 개선 방법론)

  • Lee, Jae-Shin;Kang, Bok-Young;Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.1
    • /
    • pp.39-55
    • /
    • 2011
  • Process monitoring has been emphasized for the monitoring of complex system such as chemical processing industries to achieve the efficiency enhancement, quality management, safety improvement. Recently, ICA (Independent Component Analysis) based MSPC (Multivariate Statistical Process Control) was widely used in process monitoring approaches. Moreover, DICA (Dynamic ICA) has been introduced to consider the system dynamics. However, the existing approaches show the limitation that their performances are strongly dependent on the statistical distributions of control variables. To improve the limitation, we propose a novel approach for process monitoring by integrating DICA and LOF (Local Outlier Factor). In this paper, we aim to improve the fault detection rate with the proposed method. LOF detects local outliers by using density of surrounding space so that its performance is regardless of data distribution. Therefore, the proposed method not only can consider the system dynamics but can also assure robust performance regardless of the statistical distributions of control variables. Comparison experiments were conducted on the widely used benchmark dataset, Tennessee Eastman process (TE process), and showed the improved performance than existing approaches.

A Study on Fuzzy Trend Monitoring Method for Fault Detection of Gas Turbine Engine (가스터빈 엔진의 손상 진단을 위한 퍼지 경향감시 방법에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young;Oh, Sung-Hwan;Kim, Ji-Hyun;Ko, Han-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • This work proposes a fuzzy trend monitoring method for the fault detection of a gas turbine engine through analyzing measured performance data trend. The proposed trend monitoring technique can diagnose the engine status by monitoring major engine measured parameters such as fuel flow rate, exhaust gas temperature, rotor rotational speed and vibration, and then analyzing their time deppendent changes. In order to perform this, firstly the measured engine performance data variation is formulated using Linear Regression, and then faults are isolated and identified using fuzzy logic.

An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel

  • Khambampati, Anil Kumar;Kim, Kyung Youn;Hur, Seop;Kim, Sung Joong;Kim, Jung Taek
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.532-548
    • /
    • 2021
  • Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.

Trouble Diagnostic Method in Grinding Process (연삭가공의 이상상태 진단 기법)

  • 곽재섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.20-27
    • /
    • 2000
  • A chatter vibration and a workpiece burn are the main phenomena to be monitored in modern grinding processes. This study describes a trouble diagnosis of the cylindrical plunge grinding process using the power and acoustic emission (AE) signals. The raw signals of the power and the AE occurred during the grinding operation were sampled and analyzed to determine the relationship between each fault and change of signals. A neural network that has a high success rate of the fault detection was used. Furthermore, an analysis on the influence of parameters to the chatter vibration and the grinding burn was conducted.

  • PDF

An Imperfect Debugging Software Reliability Growth Model with Change-Point (변화점을 갖는 불완전수정 소프트웨어 신뢰도 성장모형 연구)

  • Nam, Kyung-H.;Kim, Do-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.4
    • /
    • pp.133-138
    • /
    • 2006
  • In this paper, we propose a software reliability growth model (SRGM) based on the testing domain, which is isolated by the executed test cases. This model assumes an imperfect debugging environment in which new faults are introduced in the fault-correction process. We consider that the fault detection rate of NHPP model is changed in the proposed SRGM. We obtain the maximum likelihood estimate, and compare goodness-of-fit with another existing software reliability growth model.

Histogram Learning-based Solar Power Plant Failure Reading System (히스토그램 학습 기반 태양광발전소 고장 판독 시스템)

  • Youm, SungKwan;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.572-573
    • /
    • 2021
  • By optimizing the development of IoT-type thermal image-based photovoltaic fault detection equipment and interworking with drones using a drone with an intelligent path movement function, real-time analysis of the acquired image data facilitates fault reading of solar power plants. , design a system that can read out the failure of a solar panel using the image subtraction analysis technique and the presentation of the basic technology that can improve the power generation rate of the solar power plant and make an efficient maintenance model.

  • PDF

Study on Fault Detection of a Gas Pressure Regulator Based on Machine Learning Algorithms

  • Seo, Chan-Yang;Suh, Young-Joo;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2020
  • In this paper, we propose a machine learning method for diagnosing the failure of a gas pressure regulator. Originally, when implementing a machine learning model for detecting abnormal operation of a facility, it is common to install sensors to collect data. However, failure of a gas pressure regulator can lead to fatal safety problems, so that installing an additional sensor on a gas pressure regulator is not simple. In this paper, we propose various machine learning approach for diagnosing the abnormal operation of a gas pressure regulator with only the flow rate and gas pressure data collected from a gas pressure regulator itself. Since the fault data of a gas pressure regulator is not enough, the model is trained in all classes by applying the over-sampling method. The classification model was implemented using Gradient boosting, 1D Convolutional Neural Networks, and LSTM algorithm, and gradient boosting model showed the best performance among classification models with 99.975% accuracy.

Detection of MIsfired Engine Cylinder by Using Directional Power Spectra of Vibration Signals (진동 신호의 방향 파워 스펙트럼을 이용한 엔진의 실화 실린더 탐지)

  • 한윤식;한우섭;이종원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.49-59
    • /
    • 1993
  • A new signal processing technique is applied to four-cylinder spark and compression ignition engines for the diagnosis of power faults inside the cylinders. This technique utilizes two-sided directional power spectra(예S) of complex vibration signals measured from engine blocks as the patterns for engine cylinder power faults. The dPSs feature that they give not only the frequency contents but also the directivity of the engine block motion. For the automatic detection/diagnosis of cylinder power faults, pattern recognition method using multi-layer neural networks is employed. Experimental results show that the sucess rate for diagnosis of cylinder power faults using dPSs is higher than that using the conventional one-sided power spectra. The proposed technique is also tested to check the robustness to the sensor position and the engine rotational speed.

  • PDF