• Title/Summary/Keyword: fault zone width

Search Result 41, Processing Time 0.024 seconds

A Study of Stability Analysis for Tunnelling in Fault Zone (단층대 터널굴착시 안정성 확보에 관한 연구)

  • Hong, Chang-Soo;Hwang, Dae-Jin;Lee, Kang-Ho;Lee, Yong-Hun;Lee, Chang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1275-1282
    • /
    • 2005
  • This paper deals with the numerical study for excavation crossing the fault zone and the change of support pattern in field. The numerical analyses by FLAC program were performed to evaluate the suitable support pattern influenced by the width of Fault Zone, considering rock mass condition(RMR classification). Based on the results, it is found that partial reinforcement or degrading support pattern is suitable, when the width of Fault is under 3m. But when the width of Fault is more than 6m(0.5D), extra support pattern for fault zone is acceptable. At field, this result is generally used as a guide in the construction of roadway tunnel, but it is also possible to vary this assessment along the condition of fault.

  • PDF

Geotechnical treatment for the fault and shattered zones under core foundation of fill dam (단층 및 파쇄대가 분포하는 Fill Dam 기초의 보강대책)

  • 김연중;최명달
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.19-35
    • /
    • 1992
  • aThe elastic properties of the fault zone (width; 3~12m), the shattered zone (width; over 40m) and the fresh rock zone distributed under the core foundation of fill dam in granitic gneiss have widely different range. The deformation moduli of the fresh rock zone, the fault zone and the shattered zone obtained from in situ rock tests - Plate Load Test and Bore Hole Deformation Test - show a range of $42,000~168,000kg/\textrm{cm}^2,{\;}963~2,204kg/\textrm{cm}^2{\;}and{\;}1,238~2,098kg/\textrm{cm}^2$, respectively. The differential settlements hetween the fault zone and the fresh rock zone are expected after the dam construction. Therefore, the displacement of foundation and concrete fill are evaluated using FEADAM 84 program of finite element analysis. The geometric distribution of discontinuifies obtained from the site mapping and drilling is considered in the finite element analysis. The analysis shows that the differential settlements between the fault zone and the fresh rock zone is about 6cm, while that of concrete fill is within 0.5cm.

  • PDF

Relation between Groundwater Inflow into the Waterway Tunnel and Hydrogeological Characteristics in Hyeonseo-myeon, Cheongsong-gun, Korea (청송군 현서면 일대 도수로터널내 지하수 유입량과 수리지질 특성의 관련성)

  • 박재현;함세영;성익환;이병대;정재열
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.141-152
    • /
    • 2001
  • The waterway tunnel zone (length 1,484m) in the Hyeonseo-myeon area that is a part of Yeongcheon dam waterway tunnel has been studied to characterize the relationship between groundwater inflow into the waterway tunnel and hydrogeologic characteristics. The effects of sandstone thickness in the tunnel section. fracture density, fracture aperture and spacing, fault zone width and hydraulic conductivity on the early inflow (inflow prior to the lining and grouting) are investigated. The relationship between fracture density and hydraulic conductivity is also considered. The result of the study suggests that fault zone width has the greatest effect on groundwater inflow into the tunnel, and sandstone thickness, hydraulic conductivity and fracture density in order shows an influence on the inflow.

  • PDF

A Study on the Structure of the Yangsan Fault In the southern part of Kyeongju (경주 남부지역의 양산단층의 구조에 관한 연구)

  • Kim, Yeonghwa;Lee, Kiehwa
    • Economic and Environmental Geology
    • /
    • v.20 no.4
    • /
    • pp.247-260
    • /
    • 1987
  • As a part of study on the structure of the Yangsan Fault, geological and VLF EM studies have been made in the fault area approximately between Kyeongju and Eonyang. The result provides comparatively clear information on the trace of the fault and extent of fracture zone as well as the structural characteristics of the Yangsan Fault area. The location of fault trace identified from this VLF EM study coincides well in general with that expected from geological information of the area. And the extent of fault fracture zone turn out to be characterized by U shaped low resistivity zone whose width increases from north to south.

  • PDF

Electrical Resistivity Survey on the Geolgical Structure of the Bonghwajae Area in the Okchon Zone (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資原)에 관(關)한 연구(硏究) -봉화재 지역(地域)에 대(對)한 전기비저항탐사(電氣比抵抗探査)-)

  • Min, Kyung Duck;Kim, Chang Ryol;Yun, Chun Sung;Chung, Seung Hwan
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.131-137
    • /
    • 1988
  • Geological and electrical resistivity surveys were carried out to investigate subsurface geology and geologic structure of the Bonghwajae area in the Okchon zone. Pseudosections of the apparent electrical resistivity distribution along the three survey lines were obtained by using dipole-dipole electrode array method, and models of subsurface geology and geologic structure by using two dimensional finite difference method. The Bonghwajae fault zone exists around Bonghwajae area in the north-south direction, and is a boundary between Okchon Group and Choson Supper Group. Metabasite and hornblende gabbro intruded along the Bonghwajae fault zone remaining two fracture zones with low resistivity value of 20 ohm-m and widths of about 100m and 70-300m. They strike nearly N-S and dip westward with a high angle of $60-70^{\circ}$. Sochangri fault with a width of about 160m exists between Jisogori and Bonghwajae, by which Bonghwajae fault zone is displaced about 1km in the east-west direction. Hornblende gabbro whose electrical resistivity value is in the range of 5000-8000 ohm-m intruded the metabasite of 2000-4500 ohm-m after the Sochangri fault had formed. Great Limestone Group is widely distributed in the east of Bonghwajae fault zone, and interbeds so called Yongam formation of graphitic black slate with an extremely low electrical resistivity value of 2 ohm-m.

  • PDF

Hydrothermal Alteration and Engineering Characteristics in the Bokan Tunnel Area passing through the Yangsan Fault (양산단층을 통과하는 복안터널구간의 열수변질작용과 공학적 특성)

  • Lee, Chang-Sup;Lee, Hyo-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • The study area is a tunnelling section passing through the Yangsan Fault zone. Kyungbu express highway and national road 35 are located above the tunnel. Previous study showed that fault gouge and fault breccia were widely distributed in the tunnelling section with a maximum width of 100 m. From the present study, it is found that sedimentary rocks consisting mainly of shale are distributed at the eastern block of the Yangsan Fault and these rocks are not subject to mechanical fracturing and hydrothermal alteration. On the other hand, dacitic tuff distributed at the western block of the Yangsan Fault is largely affected by mechanical fracturing and hydrothermal alteration. The large fault zone of $50{\sim}130m$ width was formed by complex processes of mechanical fracturing and hydrothermal alterations such as chloritization, sericitization, and kaolinization. Based on the characteristics of mechanical fracturing and hydrothermal alterations, the Yangsan fault zone in the study area is geotechnically classified as four zones: unaltered zone, altered zone, altered fractured zone, and fault gouge zone. These zones show different degrees and aspects in mechanical fracturing and hydrothermal alterations, resulting in different engineering properties.

Tunnel Behavior According to the Pillar Width (터널의 필러부 폭에 따른 터널거동)

  • Kim, Youngsu;Kwon, Taesoon;Jeong, Ilhan;Kim, Kwangil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.15-23
    • /
    • 2009
  • This research area is a greate section of triple tunnels that passes through the fault fractured zone the in the granite area. In this area, tunnel section, pillar width and overburden height are changed consecutively due to declivity of 1 : 4.5 and slope formation of upper part as changed section. That is, stability estimation for each section varying pillar width can be conducted because tunnel diameter changes gradually from 0.5D to 1.0D according to distance of pillar width. We have estimated the stability of pillar width in triple tunnels with monitoring value, and compared the stability with results of numerical analysis.

  • PDF

Electrical Resistivity Survey in the Eon-Yang Fault Area, Southeastern Korean Peninsula (경상분지(慶尙盆地) 언양단층(彦陽斷層) 지역(地域)에 대(對)한 전기비저항(電氣比抵抗) 탐사연구(探査硏究))

  • Kim, In-Soo;Kim, Jong-Yeol
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 1983
  • Gyeongsang Basin in the southeastern part of the Korean peninsular is characterized by many fault systems. To decipher the geotectonical evolution of the Korean peninsular and marginal basins in her adjacent areas it is prerequisite to understand the spatial distribution pattern and mutual relationships of these fault systems. Because of difficulties in finding any criterion to recognize the faults in field, their extension and mutual relationships in ages are not very clear yet. As an attempt to find geophysical criteria to recognize the fault, geoelectrical resistivity survey was carried out in this study. With the Wenner configuration four resistivity soundings and twenty seven resistivity profilings were done. The electrode distance used was up to 50m. From the results of the resistivity soundings and boring data of earlier groundwater investigations the depth of alluvial and weathered zone was established to be at most 20m in the study area. In the resistivity profiling low resistivity anomaly zones are detected on every traverse, which are interpreted as caused by fractures, fault clays and mylonites in the fault zone. The width of the fault zone amounts to 0.3-1km. By correlating and connecting the negative anomaly zones from traverse to traverse one can determine the trend of th of the faultzone and therefore that of fault itself. The recognized fault trend in this way was $N15^{\circ}-20^{\circ}E$ and this coincides with the direction of the inferred fault line from earlier geological surface mapping. With the help of this characteristical negative anomaly the existance of another $N80^{\circ}W$ trending fault was estabished. This study has shown that geoelectrical resistivity survey can be applied successfully to the problem of tracing fault line insofar as a fault zone has been developed along fault line.

  • PDF

Geochemical Approach to Define the Fracture Bone Affected by the Ubo Fault at the Northern Part of the Hwabuk Dam (화북댐 상류지역을 통과하는 우보단층 파쇄대 영향분석을 위한 지화학적 접근)

  • Kwon Yong Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.191-200
    • /
    • 2004
  • The Ubo fault Bone, which cross over the northwestern to southeastern direction at the Hwabuk damsite in Hakseongri, Gunwigun, Gyeongsangbukdo Province, has length about 20km. The Ubo fault zone in this area is segmented to several small faults and makes a gentle slope and hill along the right side of the drainage in the Hwabuk dam. In the storage area of Hwabuk dam, 2 pairs of faults occur and the width of fracture zones are about 2m. To define the fracture Bone using the geochemical data, the samples were collected at 0.5m, 1m, 2m, 4m, 8m, 16m and 32m apart from the center of the main fracture Bone toward north and south, respectively, and analyzed for major elements and mineral content Approaching the fracture Bone, Fe$_2$O$_3$, MgO, K$_2$O, quartz, muscovite and chlorite are increasing and Na$_2$O, CaO, plagioclase and biotite are decreasing, respectively. Based on the rock chemistry and mineral content, the range of the main fracture zone affected by the Ubo fault at Hakseongri is 2m width in total, the secondary deformed zone is 8m width in total. Finally the maximum affected range by the Ubo fault is inferred to 16m width in total.

Identification of the Singal Fault Zone in the Kiheung Reservoir Area by Geotechnical Investigations (기흥저수지 지역의 지반조사를 통한 신갈단층대 확인)

  • Gwon, Sun-Dal;Kim, Sun-Kon;Lee, Soung-Han;Park, Kwon-Gyu
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.295-306
    • /
    • 2012
  • In this study, the Singal fault zone in the Gyeonggi massif is identified in the Kiheung area. Geotechnical investigations were carried out to locate and characterize of the Singal fault zone in the Kiheung reservoir area. The N-S striking Shingal fault is known to be a Riedel-type strike-slip fault within the Choogaryung rift. Along the fault zone, 62 bore holes were drilled and electrical resistivity survey of about 11km, and vibroseis seismic refraction and reflection survey of about 500m were done. From the result of investigations, it is found that the fault zone, consisting mainly of gouge and breccia, has maximum width of 300 meters with anastomosing geometry of secondary fractures developed subparallel to the fault zone. We interpret these geometric features to be the result of structural development of flower-structure type at the restraining band of strike-slip fault. However, there are uncertainties of this interpretation because there are virtually no outcrops in the area. Further investigation to understand geometric features and linkage style of the fault zone.