• Title/Summary/Keyword: fault transients

Search Result 70, Processing Time 0.033 seconds

Power System Fault Monitoring System using Wavelelet Transform and GPS for Accurate Time Synchronization (웨이블릿 변환과 GPS 정밀시각동기를 이용한 전력계통 고장점 모니터링 시스템에 관한 연구)

  • Kim, Gi-Taek;Kim, Hyuck-Soo;Choi, Jung-Yong
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.105-110
    • /
    • 2001
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paler describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

A Study on the Power Monitoring System using GPS for Accurate Time Synchronization (GPS 정밀시각동기를 이용한 전력계통 모니터링 시스템에 관한 연구)

  • 김혁수;전성준;김기택
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.285-285
    • /
    • 2000
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paper describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

System Effects by Operation Characteristics of Superconducting Fault Current Limiters in Distribution Systems (배전계통 초전도 한류기 동작특성에 따른 계통 영향 분석)

  • Rhee, Sang-Bong;Kim, Chul-Hwan;Kim, Kyu-Ho;Kim, Jae-Chul;Hyun, Ok-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1135-1140
    • /
    • 2008
  • Superconducting fault current limiters (SFCL) have been progressing due to the development of superconducting technology. The resistor type SFCL is one of the promising current limiting devices in power system for its effective operation. For proper application and operation of a SFCL, the prior investigation of fundamental characteristics and its effects to the distribution systems are needed. The most important current limiting behavior of a SFCL is dominated by quenching and recovery characteristics. In this paper, the resistive type SFCL was developed by using EMTP/ATPDraw and MODELS language. The operating characteristics and current limiting behaviors of the SFCL in distribution systems have been simulated and investigated.

A Study on the Fault Location Using Multiscale Correlation in Underground Power Cable Systems (Multiscale Correlation을 이용한 지중송전계통 고장점 추정에 관한 연구)

  • Jung Chae Kyun;Lee Jong Beom;Kang Ji Won
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.557-559
    • /
    • 2004
  • The study of applying wavelet transform in power cable system fault location has been recognized by many researchers and investigated. For performance of fault location, the fault generated transients can be captured at one end of the cable or both ends. Between two approaches, single-ended approach is less expensive and more reliable as it doesn't need communication link between the ends of the cable. So, we performs the approach based on the one. In this paper, we are going to introduce a new algorithm to discriminate the transient and the reflected signal using wavelet coefficient. For wavelet transform, the stationary wavelet transform(SWT) is applied instead of conventional DWT because SWT has redundancy properties which is more useful in noisy signal processing.

  • PDF

A Study on the Classification of Arcing Faults in Power Systems using Phase Plane Trajectory Method (위상면궤적을 이용한 전력계통의 고장판별에 관한 연구)

  • Park, Nam-Ok;Sin, Yeong-Cheol;An, Sang-Pil;Yeo, Sang-Min;Kim, Cheol-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.209-216
    • /
    • 2002
  • Recently, there is greater demand for stable supply of electric power as higher level of our living. It becomes the important problem that the cause of fault in power system is found out in early stage, if once it occurs. In this respect, accurate classification of arcing faults in power systems is vitally important. This paper presents a new classification method for arcing faults in power system. To obtain data of various faults including high impedance fault(HIF) and low impedance fault(LIF), HIF model with the ZnO arrester is adopted and implemented within the overall transmission system model based on the electromagnetic transients program(EMTP). Results of phase plane trajectory if Clarke modal transformation using postfault current and voltage are utilized to classify types of arcing faults. The performance of the proposed method is tested on a typical 154 kV korean transmission system under various fault conditions. As can be seen from results, phase plane trajectory of postfault current should be combined with that of o component from Clarke modal transformation to give reliability of clear fault classification. Thus the proposed method can classify arcing faults including LIFs and HIFs accurately in power systems.

Digital Filter Design for Removing Exponentially Decaying DC-Offset Component from Relaying Signal (계통사고시 지수함수 형태로 감소하는 DC-Offset 성분을 계전신호에서 제거하는 Digital Filter 디자인)

  • Kang, Sang-Hee;Kim, Nam-Ho;Kang, Yong-Cheol;Kim, Il-Dong;Park, Jong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.59-62
    • /
    • 1992
  • Power system fault transient signals are highly distorted due to the presence of high frequency components in the voltage and current signals and an exponentially decaying dc-offset component in the current signals. Modern protective relays have to make reliable fast decisions about the nature of a fault in the presence of such transients. To use a dc-offset removing filter makes relay algorithms much fast and reliable for detecting a fault. In this paper, several dc-offset removing filters are described, and characteristics of them are compared.

  • PDF

Analysis of system influence according to the insertion of the Fault Current Limiter (배전계통에서 상전도 한류기 투입에 따른 계통영향 평가)

  • Oh, Chang-Wook;Bang, Seung-Hyun;Rhee, Sang-Bong;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2279-2280
    • /
    • 2008
  • When electric power systems expand and become more interconnected, the fault current levels increase in the distribution system. Therefore, we studied the influence of the power system according to application of a resistive FCL. In this paper, the distribution system and the resistive FCL were modeled by using EMTP (Electromagnetic Transients Program), which simulates the effect of the resistive FCL for the single line ground fault in distribution system.

  • PDF

A Study On Operation Characteristic Of Recloser with Energy Storage System (ESS를 고려한 재폐로 차단기의 동작 특성에 관한 연구)

  • Jung, Ho-Chul;Rhee, Sang-Bong;Seo, Hun-Chul;Kim, Soo-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.599-600
    • /
    • 2015
  • This paper presents study of recloser operation in distribution system with Energy Storage System(ESS). However, interconnecting of ESS influence power flow and increasing/decreasing of fault current. Recloser provides stability of system and improves power transmitting ability by reclosing in fault current. The single-line to ground fault current simulated by Electromagnetic Transients Program (EMTP). The simulation is implemented for the three different situations about by using EMTP MODELS.

  • PDF

Modeling of HTS Resistive Superconducting Fault Current Limiter Using EMTDC (EMTDC를 이용한 고온초전도 저항형 한류기 모델링)

  • Lee, Jae-Deuk;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.216-218
    • /
    • 2002
  • This study is the modeling of resistive type SFCLs. There was numerical modeling and simulation using EMTP in the conventional modeling of SFCL. The numerical modeling was presented an analysis of numerical characteristic of SFCL. And the modeling using EMTP was made up of the study for setting method of specific parameters of a SFCL. This paper proposes the model of resistive type superconducting fault current limiter using EMTDC(Electromagnetic transients for DC analysis program). The simulation schemes that can be applied to the utility network readily and cheaply under various conditions considering the sort of fault, the capacity of systems as well are strongly expected and emphasized among researchers.

  • PDF

Pattern Recognition based Neural Networks Distance Relaying Scheme (패턴인식형의 신경회로망 거리계전 기법)

  • Lee, B.K.;Yun, S.M.;Park, C.W.;Jung, H.S.;Shin, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.871-874
    • /
    • 1997
  • A new typed distance relaying scheme is proposed. Artificial neural networks are applied to the distance relaying system composed of pattern recognition based. The proposed distance relaying scheme have the two block of pattern recognition stages to estimate the fundamental frequency and to classify the fault types. The advantage of this approach is demonstrated by the random waves and the fault transient wave signals of EMTP(electromagnetic transients program) in power systems fault conditions. The proposed method is compared with the conventional method and the simulation results show the efficiency of the neural networks.

  • PDF