• Title/Summary/Keyword: fault tolerant routing

Search Result 46, Processing Time 0.027 seconds

A Secure, Hierarchical and Clustered Multipath Routing Protocol for Homogenous Wireless Sensor Networks: Based on the Numerical Taxonomy Technique

  • Hossein Jadidoleslamy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.121-136
    • /
    • 2023
  • Wireless Sensor Networks (WSNs) have many potential applications and unique challenges. Some problems of WSNs are: severe resources' constraints, low reliability and fault tolerant, low throughput, low scalability, low Quality of Service (QoS) and insecure operational environments. One significant solution against mentioned problems is hierarchical and clustering-based multipath routing. But, existent algorithms have many weaknesses such as: high overhead, security vulnerabilities, address-centric, low-scalability, permanent usage of optimal paths and severe resources' consumption. As a result, this paper is proposed an energy-aware, congestion-aware, location-based, data-centric, scalable, hierarchical and clustering-based multipath routing algorithm based on Numerical Taxonomy technique for homogenous WSNs. Finally, performance of the proposed algorithm has been compared with performance of LEACH routing algorithm; results of simulations and statistical-mathematical analysis are showing the proposed algorithm has been improved in terms of parameters like balanced resources' consumption such as energy and bandwidth, throughput, reliability and fault tolerant, accuracy, QoS such as average rate of packet delivery and WSNs' lifetime.

Fault free Shortest Path routing on the de Bruijin network (드브르젼 네트워크에서 고장 노드를 포함하지 않는 최단 경로 라우팅)

  • Ngoc Nguyen Chi;Nhat Vo Dinh Minh;Zhung Yonil;Lee Sungyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.946-955
    • /
    • 2004
  • It is shown that the do Bruijn graph (dBG) can be used as an architecture for interconnection network and a suitable structure for parallel computation. Recent works have classified dBG based routing algorithms into shortest path routing and fault tolerant routing but investigation into fault free shortest path (FFSP) on dBG has been non-existent. In addition, as the size of the network increase, more faults are to be expected and therefore shortest path dBG algorithms in fault free mode may not be suitable routing algorithms for real interconnection networks, which contain several failures. Furthermore, long fault free path may lead to high traffic, high delay time and low throughput. In this paper we investigate routing algorithms in the condition of existing failure, based on the Bidirectional do Bruijn graph (BdBG). Two FFSP routing algorithms are proposed. Then, the performances of the two algorithms are analyzed in terms of mean path lengths and discrete set mean sizes. Our study shows that the proposed algorithms can be one of the candidates for routing in real interconnection networks based on dBG.

Fault-tolerant design of packet switched network with unreliable links (불안정한 링크를 고려한 패킷 교환망 설계)

  • 강충구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.447-460
    • /
    • 1996
  • Network optimization and design procedures often separate quality of service (QOS) performance measures from reliability issues. This paper considers channel allocation and flow assignment (routing) in a network subject to link failures. Fault-tolerant channel allocation and flow assingments are determined which minimize network cost while maintaining QOS performance requirements. this approach is shown to yield significant network cost reductions compared to previous heuristic methods used in the design of packet switched network with unreliable links.

  • PDF

Design of a Fault-Tolerant Routing Protocol for USN (USN을 위한 결함허용 라우팅 프로토콜의 설계)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 2009
  • Ubiquitous sensor network is the communication environment where sensor nodes move freely and construct network to get the services from the system. So, it does not need fixed infrastructure and can easily be placed in unaccessible regions like war or calamity area. Wireless sensor network protocol has self-organizing capability, need to adapt topology change flexibly and also has technique that sensor nodes work cooperatively, because network disconnection is frequently occurred due to the active mobility of sensor nodes. In this paper, we design a cluster based fault-tolerant routing protocol for the efficient topology construction and to guarantee stable data transmission in USN. The performance of the proposed protocol is evaluated by an analytic model.

  • PDF

Real-time Network Middleware Supporting Fault-Tolerant Operations for Personal Robot System

  • Choo, Seong-Ho;Park, Hong-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.756-760
    • /
    • 2005
  • By development of a robot technology, personal robot is being developed very actively. Various infra-technologies are accumulated in hardware and software how by internal a lot of research and development efforts, and it is circumstance that actual commodity is announced. But, personal robot is applied to be acting near human, and takes charge of safety and connected directly a lot of works of home security, gas-leakage, fire-warning facilities, or/and etc. So personal robot must do safe and stable action even if any unexpected accidents are happened, important functions are always operated. In this paper, we are wished to show design structures for supporting fault-tolerant operation from our real-time robot middleware viewpoint. Personal robot, in being developed, was designed by module structure to do to interconnect and to interoperate among each module that is mutually implemented by each research facilities or company. Also, each modules can use appreciate network system that is fit for handling and communicating its data. To guarantee this, we have being developed a real-time network middleware, for especially personal robot. Recent our working is to add and to adjust some functions like connection management, distributed routing mechanism, remote object management, and making platform independent robot application execution environment with self-moving of robot application, for fault-tolerant personal robot.

  • PDF

Multidimensional Ring-Delta Network: A High-Performance Fault-Tolerant Switching Networks (다차원 링-델타 망: 고성능 고장감내 스위칭 망)

  • Park, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, a high-performance fault-tolerant switching network using a deflection self-routing was proposed. From an abstract algebraic analysis of the topological properties of the Delta network, which is a baseline switching network, we derive the Multidimensional Ring-Delta network: a multipath switching network using a deflection self-routing algorithm. All of the links including already existing links of the Delta network are used to provide the alternate paths detouring faulty/congested links. We ran a simulation analysis under the traffic loads having the non-uniform address distributions that are usual in Internet. The throughput of $1024\;{\times}\;1024$ switching network proposed is better than that of the 2D ring-Banyan network by 13.3 %, when the input traffic load is 1.0 and the hot ratio is 0.9. The reliability of $64\;{\times}\;64$ switching network proposed is better than that of the 2D ring-Banyan network by 46.6%.

Constructing Algorithm of Edge-Disjoint Spanning Trees in Even Interconnection Network Ed (이븐 연결망 Ed의 에지 중복 없는 스패닝 트리를 구성하는 알고리즘)

  • Kim, Jong-Seok;Kim, Sung-Won
    • The KIPS Transactions:PartA
    • /
    • v.17A no.3
    • /
    • pp.113-120
    • /
    • 2010
  • Even networks were introduced as a class of fault-tolerant multiprocessor networks and analyzed so many useful properties and algorithms such as simple routing algorithms, maximal fault tolerance, node disjoint path. Introduced routing algorithms and node disjoint path algorithms are proven to be optimal. However, it has not been introduced to constructing scheme for edge-disjoint spanning trees in even networks. The design of edge-disjoint spanning trees is a useful scheme to analyze for measuring the efficiency of fault tolerant of interconnection network and effective broadcasting. Introduced routing algorithm or node disjoint path algorithm are for the purpose of routing or node disjoint path hence they are not applicable to constitute edge disjoint spanning tree. In this paper, we show a construction algorithm of edge-disjoint spanning trees in even network $E_d$.

Fault-Tolerant Adaptive Routing : Improved RIFP by using SCP in Mesh Multicomputers (적응적 오류 허용 라우팅 : SCP를 이용한 메쉬 구조에서의 RIFP 기법 개선)

  • 정성우;김성천
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.603-609
    • /
    • 2003
  • Adaptive routing methods are studied for effective routing in many topologies where occurrence of the faulty nodes are inevitable. Mesh topology provides simplicity in implementing these methods. Many routing methods for mesh are able to tolerate a large number of faults enclosed by a rectangular faulty block. But they consider even good nodes in the faulty block as faulty nodes. Hence, it results the degradation of node utilization. This problem is solved by a method which transmits messages to destinations within faulty blocks via multiple “intermediate nodes”. It also divides faulty block into multiple expanded meshes. With these expanded meshes, DAG(Directed Acyclic Graph) is formed and a message is able to be routed by the shortest path according to the DAG. Therefore, the additional number of hops can be resulted. We propose a method that reduces the number of hops by searching direct paths from the destination node to the border of the faulty block. This path is called SCP(Short-Cut Path). If the path and the traversing message is on the same side of outside border of the faulty block, the message will cut into the path found by our method. It also reduces the message traverse latency between the source and the destination node.

Fault Tolerant Routing Algorithm Based On Dynamic Source Routing

  • Ummi, Masruroh Siti;Park, Yoon-Young;Um, Ik-Jung;Bae, Ji-Hye
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.223-224
    • /
    • 2009
  • A wireless ad hoc network is a decentralized wireless network. The network is ad hoc because each node is willing to forward data for other nodes, and so the determination of which nodes forward data is made dynamically based on the network connectivity. In this paper, we proposed new route maintenance algorithm to improve the efficiency and effective in order to reach destination node. In this algorithm we improve existing route maintenance in Dynamic Source Routing protocol, to improve the algorithm we make a new message we call Emergency Message (EMM). The emergency message used by the node moved to provide information of fault detection.

Reliability Analysis of the 2-Dimensional Ring-Banyan Network (2차원 링-밴얀 망의 신뢰성 분석)

  • Park, Jae-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.4
    • /
    • pp.256-261
    • /
    • 2007
  • 2-Dimensional Ring-banyan network is a high-performance fault-tolerant switching network using a deflection self-routing. The throughput of the switching network is better than that of Cyclic Banyan network under non-uniform traffic. In this paper, we present an analytic reliability analysis of the fault-tolerant switching network. We present the Mean-Time-to-Failure that is calculated by using probabilistic model. This model also takes into account a hardware complexity. In case of $16\;{\times}\;16$ size, the presented switching network is 1.275 times more reliable than Hui's switching network. And it is 1.510 times more reliable than Hui's network in case of $64\;{\times}\;64$ size.