Proceedings of the Korean Society of Propulsion Engineers Conference
/
2003.10a
/
pp.267-270
/
2003
An intelligent performance diagnostic computer program of a gas turbine using the NN(Neural Network) was developed. Recently on-condition performance monitoring of major gas path components using the GPA(Gas Path Analysis) method has been performed in analyzing of engine faults. However because the types and severities of engine faults are various and complex, it is not easy that all fault conditions of the engine would be monitored only by the GPA approach. Therefore in order to solve this problem, application of using the NNs for learning and diagnosis would be required. Among then, a BPN (Back Propagation Neural Network) with one hidden layer, which can use an updating learning rate, was proposed for diagnostics of PT6A-62 turboprop engine in this work.
Proceedings of the Korea Institute of Fire Science and Engineering Conference
/
1997.11a
/
pp.252-259
/
1997
A method to automate hazard analysis of chemical plants is proposed in this paper. The proposed system is composed of three knowledge bases - unit knowledge base, organizational knowledge base and material knowledge base, and three hazard analysis algorithms - deviation, malfunction and accident analysis algorithm. Hazard analysis inference procedure is developed based on the actual hazard analysis procedures and accident development sequence. The proposed algorithm can perform hazard analysis in two methods and represent all conceivable types of accidents using accident analysis algorithm. In addition, it provides intermediate steps in the accident propagation, and enables the analysis result to give a useful information to hazard assessment. The proposed method is successfully demonstrated by being applied to diammonium phosphate manufacturing process. A system to automate hazard analysis is developed by using the suggested method. The developed system is expected to be useful in finding the propagation path of a fault or the cause of a malfunction as it is capable to approach causes of faults and malfunctions simultaneously.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.18
no.4
/
pp.269-282
/
2006
We numerically studied tsunami propagation characteristics through Korean Straits based on nonlinear shallow water equation, a robust wave driver of the near field tsunamis. Tsunamis are presumed to be generated by the earthquake in Tsuhima-Koto fault line. The magnitude of earthquake is chosen to be 7.5 on Richter scale, which corresponds to most plausible one around Korean peninsula. It turns out that it takes only 60 minutes for leading waves to cross Korean straits, which supports recently raised concerns at warning system might be malfunctioned due to the lack of evacuation time. We also numerically obtained the probability of tsunami inundation of various levels, usually referred as tsunami hazard, along southern coastal area of Korean Peninsula based on simple seismological and Kajiura (1963)'s hydrodynamic model due to tsunami-generative earthquake in Tsuhima-Koto fault line. Using observed data at Akita and Fukaura during Okushiri tsunami in 1993, we verified probabilistic model of tsunami height proposed in this study. We believe this inundation probability of various levels to give valuable information for the amendment of current building code of coastal disaster prevention system to tame tsunami attack.
Javed, Hassan;LI, Kang;Zhang, Guoqiang;Plesca, Adrian Traian
Journal of Electrical Engineering and Technology
/
v.13
no.6
/
pp.2392-2401
/
2018
Creepage discharge faults in air on solid insulating material play a vital role in degradation and ageing of material which ultimately leads to breakdown of power equipment. And electric discharge decompose air in to its by-products such as Ozone and $NO_x$ gases. By analyzing air decomposition gases is a potential method for fault diagnostic in air. In this paper, experimental research has been conducted to study the effect of creepage discharge on rate of generation of air decomposition by-products using different insulating materials such as RTV, epoxy and fiberglass laminated sheet. Moreover XRF analysis has been done to analyze creepage discharge effect on these insulating materials. All experiments have been done in an open air test cell under constant temperature and pressure conditions. While analysis has been made for low and high humidity conditions. The results show that the overall concentration of air decomposition by-products under creepage discharge in low humidity is 4% higher than concentration measured in high humidity. Based on this study a mathematical relationship is also proposed for the rate of generation of air decomposition by-products under creepage discharge fault. This study leads to indirect way for diagnostic of creepage discharge propagation in air.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.31
no.6
/
pp.368-378
/
2019
Logic trees for probabilistic tsunami hazard assessment include numerous variables to take various uncertainty on earthquake generation into consideration. Results from the hazard assessment vary in different way as more variables are considered in the logic tree. This study is conducted to estimate the effects of various scaling laws and fault parameters on tsunami hazard at the nearshore of Busan. Active fault parameters, such as strike angle, dip angle and asperity, are adjusted in the modelling of tsunami propagation, and the numerical results are used in the sensitivity analysis. The influence of strike angle to tsunami hazard is not as much significant as it is expected, instead, dip angle and asperity show a considerable impact to tsunami hazard assessment. It is shown that the dip angle and the asperity which determine the initial wave form are more important than the strike angle for the assessment of tsunami hazard in the East Sea.
Transactions of the Korean Society of Mechanical Engineers A
/
v.36
no.4
/
pp.373-378
/
2012
The objective of this research is to examine the probabilistic approach to evaluating turbine ejection frequency considering common-cause failure. This paper identifies basic turbine ejection mechanisms under high and low speeds and presents a detailed probabilistic methodology (fault tree) for assessing ejection frequency. The alpha factor methodology is applied to common-cause failure evaluations. The frequencies under different test schemes are compared and the propagation of uncertainty through the fault tree model is evaluated. The following conclusions were reached: (1) the turbine blade ejection frequency due to ductile failure under high speed is around 8.005E-7/yr; (2) if common-cause failure is considered, the frequency will be increased by 11% and 33% depending on the test scheme; and (3) if the parameter uncertainties are considered, the frequency is estimated to be in the range of 9.35E-7 to 1.13E 6, with 90% confidence.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.20
no.1
/
pp.65-73
/
2007
Pattern classification of single and multiple discharge sources was applied using a wavelet image signal method in which a feature extraction was applied using a hidden sub-image. A feature extracting method that used vertical and horizontal images using an MSD method was applied to an averaging process for the scale of pulses for the phase. A feature extracting process for the preprocessing of the input of a neural network was performed using an inverse transformation of the horizontal, vertical, and diagonal sub-images. A back propagation algorithm in a neural network was used to classify defective signals. An algorithm for wavelet image processing was developed. In addition, the defective signal was classified using the extracted value that was quantified for the input of a neural network.
The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.
Propagation of the generalized Rayleigh waves in an elastic half-space covered by an elastic layer for different initial stress combinations and imperfect contact conditions is investigated. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed, the corresponding dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results on the influence of the initial stress patterns and on the influence of the contact conditions are presented and discussed. The case where the external forces are "follower forces" is considered as well. These investigations provide some theoretical foundations for the study of the near-surface waves propagating in layered mechanical systems and can be successfully used for estimation of the degree of the bonded defects between layers, fault characteristics and study of the behavior of seismic surface waves propagating under the bottom of the oceans.
Early criticality prediction models that determine whether a design entity is fault-prone or not are becoming more and more important as software development projects are getting larger. Effective predictions can reduce the system development cost and improve software quality by identifying trouble-spots at early phases and proper allocation of effort and resources. Many prediction models have been proposed using statistical and machine learning methods. This paper builds a prediction model using Support Vector Machine(SVM) which is one of the most popular modern classification methods and compares its prediction performance with a well-known prediction model, BackPropagation neural network Model(BPM). SVM is known to generalize well even in high dimensional spaces under small training data conditions. In prediction performance evaluation experiments, dimensionality reduction techniques for data set are not used because the dimension of input data is too small. Experimental results show that the prediction performance of SVM model is slightly better than that of BPM and polynomial kernel function achieves better performance than other SVM kernel functions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.