• Title/Summary/Keyword: fault plane solution

Search Result 16, Processing Time 0.021 seconds

A Composite Fault-plane Solution of Microearthquakes in the Yangsan Fault Area during 1996 (1996년 양산단층 일대의 미소지진을 이용한 복합단층면해)

  • Lee, Gi Hwa;Jeong, Tae Ung
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.235-240
    • /
    • 1999
  • From the seismic network data of the Korea Institute of Geology, Mining & Materials during 1995-1996, we derived a composite fault-plane solution of the microearthquakes occurred in the Yangsan fault area. The composite fault-plane solution of nine events shows the orientation of fault 15 ± 3°in strike, 60 ± 8°in dip and 140°in rake or 128 ± 3°in strike, 56 ± 8°in dip and 37°in rake. The compressional axis of the stress field trends ENE to WSW, and this field suggests strike-slip motion with thrust component. The result is consistent with the 1996 Yeong-weol event and the stress field in and around the Korean Peninsula, previously reported.

  • PDF

Fault Plane Solutions for the Recent Earthquakes in the Central Region of South Korea

  • Hoe, Seo-Yun;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.437-445
    • /
    • 2008
  • We analyzed fault plane solutions of the recent twenty-two earthquakes which occurred from 2004 to 2006 in the central part of the Korean Peninsula by using P- and S-wave polarities along with SH/P amplitude ratios. The fault plane solution shows that strike-slip fault is dominant here, especially for the events with local magnitude equal to or greater than 3.0. However, some events with local magnitude less than 3.0 show normal fault or strike-slip fault with normal components. In the case of strike-slip fault, its orientation is almost in the direction of NNE-SSW to NE-SW almost parallel to the general trend of faults, while the compressional axis of the stress field trends ENE to E-W. The result is almost consistent with the stress field in and around the Korean peninsula, as reported previously. We cannot give any appropriate explanations to the normal faulting events along the western offshore and inland areas whether it is related to the local stress changes or tectonically unidentified extensional structures. Thus, an extension of investigations is desirable to clarify the cause of such phenomena.

Fault Plane Solutions for the June 26, 1997 Kyong-ju Earthquake (1997년 6월 26일 경주지진의 단층면해 비교해석)

  • Chung, Tae-Woong;Kim, Woo-Han
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.245-250
    • /
    • 2000
  • By using amplitude ratios (SV/P, SH/P, SV/SH) and P and S wave polarities, we obtained fault plane solutions of the June 26, 1997 Kyong-ju earthquake. The solutions show $150{\pm}4^{\circ}$ in strike, $63{\pm}6^{\circ}$ in dip and $65{\pm}7^{\circ}$ in rake, or $18{\pm}12^{\circ}$ in strike, $26{\pm}3^{\circ}$ in dip and $120{\pm}5^{\circ}$ in rake. This result implies the stress field trending ENE-WSW, which is remarkably consistent with the previous results obtained from the moment tensor inversion, and from the composite fault plane solution for the events occurred around the Yangsan fault area.

  • PDF

Analysis of Fault Plane Solution and Stress Field Using the Micro-ewarthquakes in the Central Region of South Korea (남한 중부지역에서 발생한 미소지진의 단층면해와 응력장 해석)

  • Cheong, Tae-Woong;Lee, Jae-Gu;Lee, Duk-Kee;Lee, Eun-Ah;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.22 no.4
    • /
    • pp.292-300
    • /
    • 2001
  • By using two methods we obtained plane solutions for 5 groups of earthquakes including 13 events, which occurred in the central region of South Korea after December 1997. The first method is the composite fault plane solution by P wave polarity, and the second the solution by amplitude ratio (SV/P, SH/P, SV/SH) and P and S wave polarities. The two method results show similar results. The strike of fault is in the direction of NNE-SSW and WNW-ESE with the movement of strike-slip or strike-slip including thrust component. The compressional axis of the stress field dominantly trends ENE-WSW or NE-SW. The results are almost consistent with the other main events occurred in and around the Korean Peninsula.

  • PDF

Fault plane solutions of the December 13, 1996 Yeongweol earthquake (1996년 12월 13일 영월지진의 진원단층면 방향)

  • Park, Chang Eop;Sin, Jin Su;Ji, Heon Cheol;Gang, Ik Beom;Ryu, Yong Gyu
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • Fault-plane solutions of the December 13, 1996 Yeongweol earthquake with magnitude 4.5 is obtained using the grid test technique. Thirty polarities of P waves recorded at KMA, KIGAM, KSRS and JAPAN stations are used for the event. The obtained fault plane solution shows strike-slip motion with significant amount of thrust component. The orientation of the fault is 180±20° in strike, 50±5° in dip and 150±5° in rake, or 292±3° in strike, 65±5° in dip and 30±10° in rake. These solutions are similar to those of earthquakes occurred at Sagju (Jan. 7, 1980), Pohang (Apr. 15, 1981) and offshore Gunsan (Oct. 6, 1976). The compressional axis of the stress field is trending from ENE to WSW, which is consistent with the previously defined typical regional tectonic stress orientation in and around Korean Peninsula.

  • PDF

Relation of Intensity, Fault Plane Solutions and Fault of the January 20, 2007 Odaesan Earthquake (ML=4.8) (2007년 1월 20일 오대산 지진(ML=4.8)의 진도, 단층면해 및 단층과의 관계)

  • Kyung, Jai-Bok;Huh, Seo-Yun;Do, Ji-Yong;Cho, Deok-Rae
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.202-213
    • /
    • 2007
  • The Odaesan earthquake $(M_L=4.8)$ occurred near Mt. Odae, Jinbu-Myon, Pyongchang-Gun, Kangwon Province on January 20, 2007. It has a shallow focal depth about 10 km. Its felt area covers most of the southern peninsula except some southern and western inland area. The maximum MM intensity was VI in the areas including Jinbu, Doam, Kangreung, Jumunjin, and Pyongchang. In these areas, there was a very strong shaking that caused several cracks on the walls of buildings and houses, slates falling off the roof, tiles being off the wall, things falling off the desk, and rock falling from the mountains. In order to get fault plane solutions, grid searches were performed by fitting distributions of P-wave first-motion polarities and SH/P amplitude ratios for each event. The results showed that the main shock represented right-lateral strike-slip sense and two aftershocks, reverse sense. It seems that the seismogenic fault may be the NNE-SSW trending Weoljeongsa fault near the epicenter based on the distribution of epicenters (foreshock, main shock, and aftershocks), damage area, and fault plane solution. The distribution of the epicenters indicates that the length of the subsurface rupture is estimated to be about 2 km.

An Analysis of the Fault Plane Solution and Intensity on the Iksan Earthquake of 22 December 2015 (2015년 12월 22일 발생한 익산지진의 단층면해와 진도 분석)

  • Kim, Jin-Mi;Kyung, Jai Bok;Kim, Kwang-Hee
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.561-569
    • /
    • 2017
  • Fault plane solutions of the Iksan earthquake ($M_L=3.85$) and two aftershocks were obtained using the FOCMEC (FOCal MEChanism determination) program. The main event showed the characteristic of strike slip faulting with reverse component. It has the fault planes with NE-SW or NW-SE direction. This is similar to the fault characteristics of earthquake pattern in the inland area of the Korean Peninsula. In order to detect micro-earthquake events, continuous seismic waveform data of the thirteen seismic stations within a radius of 100km from epicenter were analyzed by PQLII program (PASSCAL, 2017) for the period from December 15, 2015 to January 22, 2016. The epicenters of nineteen micro-events were newly determined by Hypoinverse-2000 program. They are not concentrated along some lineaments or fault lines. The intensity of the Iksan earthquake was obtained by estimating the telephone inquiries, the degree of ground shaking or damage all around the southern peninsula. The instrumental intensity was also obtained using PGA (Peak Ground Acceleration) records. As a result, the maximum MM intensity was estimated to be V near the epicenter.

Source parameters of December 13, 1996 Yeongweol Earthquake (1996년 12월 13일 영월지진의 진원요소)

  • 박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.15-20
    • /
    • 1997
  • Source parameters of the December 13, 1996 Yeongweol earthquake are estimated using the grid test technique. Thirty polarities of P waves recorded at KMA, KIGAM, KSRS and JAPAN stations are used for the event. The obtained fault plane solution shows predominantly strike-slip motion with small amount of thrust component. The orientation of the fault is 180$\pm$10$^{\circ}$in strike, 50$\pm$5$^{\circ}$in dip and 150$\pm$5$^{\circ}$in rake, or 292$\pm$3$^{\circ}$in strike, 65$\pm$5$^{\circ}$in dip and 30$\pm$10$^{\circ}$ in rake. These solutions are very similar to those of earthquakes occurred at Sagju, Pohang and offshore Gunsan. The compressional axis of stress field is trending from ENE to WSW, which is consistent with the previously defined typical regional tectonic stress orientation in and around Korean Peninsula.. From the result of this study and other source mechanisms around the Korean Peninsula, we are of opinion that tectonic stress around the Korean Peninsula may be more attributed to the collision of Indian plate with the Eurasian plate than subduction of Pacific and Philippine plates.

  • PDF

A source and phase identification study of the M/syb L/ 3.6 Cheolwon, Korea, earthquake occurred on December 10, 2002 (2002년 12월 10일 규모 3.6 철원지진의 진원요소 및 파상분석)

  • 김우한;박종찬;김성균;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.3-11
    • /
    • 2003
  • We analysed phases recorded by the M$_{L}$ 3.6 Cheolwon, Korea, earthquake occurred on the 10th of December, 2002 and computed source parameters such as hypocenter, origin time, earthquake magnitude and focal solutions. We used PmP and SmS phases to increase the accuracy in determinations of the hypocenter and origin time in addition to the phases such as Pg, Pn, Sg and Sn which are generally used in routine processes. The epicenter, depth, and origin time of the Cheolwon earthquake determined based on data of 11 stations within 200 km from the epicenter are 38.8108$^{\circ}$N, N, 127.2214'E, 11.955 km, and on 7:42:51.436. The earthquake magnitude obtained from all the stations is 3.6 M$_{L}$. The fault plane solution calculated based on data from 19 stations indicates slip process of a normal fault including strike-slip motion. The direction of compressional stress field has a large vertical component and a ESE-WNW direction of horizontal component, which is different from the mainly horizontal direction of main compressional stress field in the Korean Peninsula (ENE-WSW) obtained by previous studies.ies.s.

  • PDF

Seismic surface waves in a pre-stressed imperfectly bonded covered half-space

  • Negin, Masoud
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2018
  • Propagation of the generalized Rayleigh waves in an elastic half-space covered by an elastic layer for different initial stress combinations and imperfect contact conditions is investigated. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed, the corresponding dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results on the influence of the initial stress patterns and on the influence of the contact conditions are presented and discussed. The case where the external forces are "follower forces" is considered as well. These investigations provide some theoretical foundations for the study of the near-surface waves propagating in layered mechanical systems and can be successfully used for estimation of the degree of the bonded defects between layers, fault characteristics and study of the behavior of seismic surface waves propagating under the bottom of the oceans.