• Title/Summary/Keyword: fault plane

Search Result 129, Processing Time 0.024 seconds

Magnetic Investigation of the Yangsan Fault (양산 단층에 대한 자력탐사 연구)

  • Kwon, Byung-Doo;Lee, Ki-Won
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.421-434
    • /
    • 1991
  • Ground magnetic surveys were conducted at four areas where the Yangsan fault, the most prominent lineament in the Kyeongsang basin, appears to be passed through. For data processing, IGRF correction, upward continuation and reduction-to-the-pole were performed. The automatic inversion by using a matrix computation method, which takes the depth to bottom layer of the horizontal two layer structure as the model parameter, has been attempted to delineate the subsurface structure. Upward continuation of the surface magnetic map to the same level of the aeromagnetic survey (KIER, 1989) resulted in very similiar patterns to those of aeromagnetic data. Subsurface modeling of eight profile data show that the strike and dip of the Yangsan fault in study areas are $N6^{\circ}-15^{\circ}E$, and near vertical to somewhat eastward, repectively, despite of the local lithological contrast of each study area. It seems that the magnetic effect of faulting in the study area 1, which locates in the most northern part of the survey areas, is disturbed by that of igneous intrusion. At study area 2, the possibility of volcanic or igneous intrusion, which is 200-300 meters wide along the fault plane was presented. At study area 3, unlike other study areas, distinct fracture zone of 500-700 meters in width was revealed along the surface fault line. The andesitic rocks of the study area 4 have very high susceptibilities and the fault line on surface of this area was shifted about 500 meter eastward, as compared with the inferred fault line by the previous study.

  • PDF

Failure Types in Rock Slopes According to Geological Characteristics (지질특성에 따른 암반사면 붕괴유형연구)

  • 정형식;유병옥
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.37-50
    • /
    • 1996
  • In this study, we collected data through the investigation of rock slopes of highway. By analyzing the collected data, the main factors of rock slope failure were studied. We studied on the failure types and scales according to rock types and geological structures in many rock slopes of highway. As a result, it was shown that many failed slopes were distributed in the areas of Cretaceous sedimentary rocks of south-eastern part in the Korean Peninsula and the Gneiss Complex in both Kyonggi-Do and Kangwon-Do. According to rock types, the following slope failure types were shown : that igneous rocks had the types of rock fall, plane failure, soil erosion and circular failure but had low failure frequency, and sedimentary rocks had predominantly the type of plane failure. Metamorphic rock showed the types of circular failure, wedge failure and plane failure due to poor rock qualities . According to geological structures, the following slope failure types were shown slope failure in igneous rocks was caused by joints, and in sedimentary rocks by bedding plane, and in metamorphic rocks by faults and poor rock qualities.

  • PDF

A Case Study of Geometrical Fracture Model for Groundwater Well Placement, Eastern Munsan, Gyeonggido, Korea (지하수개발을 위한 단열모델 연구사례(경기도 문산 동쪽지역))

  • Choi Sung-Ja;Chwae Uee-Chan;Kim Se-Kon;Park Jun-Beom;Sung Ki-Sung;Sung Ik-Whan
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.163-171
    • /
    • 2006
  • This study is the case of groundwater development based on the geometrical fracture model of target area established only through geological fracture mapping technique. A fracture mapping of $9km^2$, eastern Munsan, has been conducted to determine geological and hydrological factors for new water well placement in the Gyeonggi gneiss complex. Geophysical exploration was not applicable because of small restricted area and dense underground utilities at the site. Form line mapping on the basis of foliation orientation and rock type revealed a synform of NS fold axis bearing to the south. An EW geological cross-section passed through the site area shows a F2 synform as a double-wall ice cream spoon shape. Three regional faults of $N20^{\circ}E,\;N30^{\circ}W$, and NS have been dragged into the site to help understand extensional fault paths. The $N20^{\circ}E$ fault with dextral sense is geometrically interpreted as a western fault of two flexural conjugate type-P shear faults in the F2 synformal fold. The NE cross-section reveals that a possible groundwater belt in the western limb of super-posed fold area is formed as a trigonal prism within 100 m depth of the intersectional space between the $N20^{\circ}E$ fault plane and the weakly sheared plane of transposed foliation. Another possible fault for water resource strikes $N40^{\circ}E$. Recommended sites for new water well placement are along the $N20^{\circ}E\;and\;N40^{\circ}E$ faults. As a result of fracture mapping, 145 ton/day of water can be produced at one well along the $N20^{\circ}E$ fault line. Exploration of groundwater in the area is succeeded only using with geological fracture mapping and interpretation of geological cross-section, without any geophysical survey. Intersection of fault generated with the F2 synformal fold and foliation supply space of groundwater reserver.

Fault rupture directivity of Odaesan Earthquake (M=4.8, '07. 1. 20) (오대산지진(M=4.8, '07. 1. 20)의 단층파열방향성)

  • Yun, Kwan-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Fault rupture directivity of the Odaesan earthquake, which was inferred to be the main cause of the high PGAvalue (> 0.1 g) unusually observed at the near-source region, was analyzed by using the data from the nearby (R < 100 km) dense seismic stations. The Boatwright's method (2007) was adopted for this purpose in which the azimuth and takeoff angle of the unilateral rupture directivity function could be estimated based on the relative peak ground-motions of seismic stations resulting from the nature of the rupture directivity. In this study, the approximate values of the relative peak ground-motions was derived from the difference between the log residuals of the point-source spectral model (Boore, 2003) for the main and secondary events based on the Random Vibration Theory. In this derivation, the spectral difference for a frequency range between the source corner frequencies of main and secondary events was considered to reflect only the effect of the fault directivity. The inversion result of the model parameters for the fault directivity function showed that the fault-plane of NWW-SEE direction dipping steeply to the North with high rupture velocity near upward in SE direction is responsible for the observed high level of ground-motion at the near-source region.

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part I : The Variation of Complex Power Trajectory in Complex Plane (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part I: 복소평면에서의 복소전력의 궤적변화)

  • Kwon O-Sang;Kim Chul-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.7
    • /
    • pp.345-351
    • /
    • 2005
  • An out-of-step condition results from the loss of the synchronism of the generators. A disturbance in a power system causes the generator angle to oscillate. When there is a severe disturbance such as a heavy current fault loss of major generation or loss of a large block of load, the oscillation can be severe and even increase largely and finally the out-of-step condition may un. During the power swing and out-of-step conditions, the apparent impedance at a relay location changes, and the power flow also changes as the angle difference is varied. This paper presents a method to analyze the trajectory of complex power during a power swing and out-of-step condition. The trajectory of the complex power is analyzed when a power swings and a fault occurs. Moreover, the complex power is analyzed when the ratios between the voltages at both sides and the line impedances are changed. These methods are verified through simulation using the ATP/EMTP MODELS.

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part I : The Variation of Complex Power trajectory in Complex plane (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part I: 복소평면에서의 탁소전력의 궤적변화)

  • Kwon, O.S.;Kim, C.H.;Park, N.O.;Chai, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.310-312
    • /
    • 2005
  • An out-of-step condition results from the loss of the synchronism of the generators. A disturbance in a power system causes the generator angle to oscillate. When there is a severe disturbance such as a heavy current fault loss of major generation or loss of a large block of load the oscillation can be severe and even increase largely and finally the out-of-step condition may occur During the power swing and out-of-step conditions, the a apparent impedance at a relay location changes, and the power flow also changes as the angle difference is varied. This paper presents a method to analyze the trajectory of complex power during a power swing and out-of-step condition. The trajectory of the complex power is analyzed when a power swings and a fault occurs. Moreover, the complex power is analyzed when the ratios between the voltages at both sides and the line impedances are changed. These methods are verified through simulation using the ATP/EMTP MODELS.

  • PDF

Implementation of a Network Provisioning System with User-driven and Trusty Protection Management

  • Lim, H.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4720-4738
    • /
    • 2015
  • Proper management on user-driven virtual circuits (VCs) is essential for seamless operation of virtual networks. The Network Provisioning System (NPS) is useful software for creating user-driven VCs automatically and must take fault management into account for physical layer impairments on user-driven VCs. This paper addresses a user-driven and trusty protection management in an NPS with an open standard Network Service Interface (NSI), as a contribution to show how to implement the user-driven and trusty protection management required for user-driven VCs. In particular, it provides a RESTful web service Interface for Configuration and Event management (RICE) that enable management of a distinguished data and control plane VC status between Network Service Agents (NSAs) in the event of a node or link fault and repair in a domain. This capability represents a contribution to show how network and protection events in a domain can be monitored between NSAs (NPSs with the NSI) in multiple domains. The implemented NPS controls and manages both the primary and backup VC with disjoint path in a user-driven manner. A demonstration to verify RICE API's capability is addressed for the trusty protection in the dynamic VC network.

Source parameters of December 13, 1996 Yeongweol Earthquake (1996년 12월 13일 영월지진의 진원요소)

  • 박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.15-20
    • /
    • 1997
  • Source parameters of the December 13, 1996 Yeongweol earthquake are estimated using the grid test technique. Thirty polarities of P waves recorded at KMA, KIGAM, KSRS and JAPAN stations are used for the event. The obtained fault plane solution shows predominantly strike-slip motion with small amount of thrust component. The orientation of the fault is 180$\pm$10$^{\circ}$in strike, 50$\pm$5$^{\circ}$in dip and 150$\pm$5$^{\circ}$in rake, or 292$\pm$3$^{\circ}$in strike, 65$\pm$5$^{\circ}$in dip and 30$\pm$10$^{\circ}$ in rake. These solutions are very similar to those of earthquakes occurred at Sagju, Pohang and offshore Gunsan. The compressional axis of stress field is trending from ENE to WSW, which is consistent with the previously defined typical regional tectonic stress orientation in and around Korean Peninsula.. From the result of this study and other source mechanisms around the Korean Peninsula, we are of opinion that tectonic stress around the Korean Peninsula may be more attributed to the collision of Indian plate with the Eurasian plate than subduction of Pacific and Philippine plates.

  • PDF

A source and phase identification study of the M/syb L/ 3.6 Cheolwon, Korea, earthquake occurred on December 10, 2002 (2002년 12월 10일 규모 3.6 철원지진의 진원요소 및 파상분석)

  • 김우한;박종찬;김성균;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.3-11
    • /
    • 2003
  • We analysed phases recorded by the M$_{L}$ 3.6 Cheolwon, Korea, earthquake occurred on the 10th of December, 2002 and computed source parameters such as hypocenter, origin time, earthquake magnitude and focal solutions. We used PmP and SmS phases to increase the accuracy in determinations of the hypocenter and origin time in addition to the phases such as Pg, Pn, Sg and Sn which are generally used in routine processes. The epicenter, depth, and origin time of the Cheolwon earthquake determined based on data of 11 stations within 200 km from the epicenter are 38.8108$^{\circ}$N, N, 127.2214'E, 11.955 km, and on 7:42:51.436. The earthquake magnitude obtained from all the stations is 3.6 M$_{L}$. The fault plane solution calculated based on data from 19 stations indicates slip process of a normal fault including strike-slip motion. The direction of compressional stress field has a large vertical component and a ESE-WNW direction of horizontal component, which is different from the mainly horizontal direction of main compressional stress field in the Korean Peninsula (ENE-WSW) obtained by previous studies.ies.s.

  • PDF

Magnetic Anisotropy and Tectonic Stress Field of Tertiary Rocks in Pohang-Ulsan area, Korea (포항이남 제3기분지암석의 자기 비등방성과 지구조적 응력장)

  • Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 1990
  • Magnetic anisotropy of a total of 213 independently oriented Tertiary rock samples from Pohang-Ulsan area has been studied. The sampled strata comprise basalts, tuffs and black shale, and range in age from Eocene to Miocene. The previous palaeomagnetic studies indicate that their magnetic carrier minerals are titanomagnetites. Among 23 sampled sites, 11 sites were found to preserve magnetic load foliation parallel to the bedding plane caused by the Iithostatic load of the overlying strata. Other 4 sites showed magnetic lineation indicating the flow direction of lava and tuffs. The remaining 8 sites revealed the magnetic tectonic foliation nearly vertical to the bedding plane. This magnetic foliation is interpreted to be generated by tectonic compression which acted nearly horizontally during the solidification stage of the strata. The compression directions deduced from the tectonic foliation of the 8 sites can be grouped into internally very consistent two group: a N-S trending one and the other WNW-ESE trending one. It is interpreted that the former N-S compression was associated with the N-S spreading of the East Sea(Sea of Japan) and the dextral strike-slip movement of the Yangsan-Ulsan fault system. The latter WNW-ESE compression is interpreted to represent the folding and reverse faulting activity in the Korean and Tsushima straits during middle/late Miocene times.

  • PDF