• Title/Summary/Keyword: fault monitoring

Search Result 705, Processing Time 0.03 seconds

Deep learning-based sensor fault detection using S-Long Short Term Memory Networks

  • Li, Lili;Liu, Gang;Zhang, Liangliang;Li, Qing
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.51-65
    • /
    • 2018
  • A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.

Development of Vehicle Longitudinal Controller Fault Detection Algorithm based on Driving Data for Autonomous Vehicle (자율주행 자동차를 위한 주행 데이터 기반 종방향 제어기 고장 감지 알고리즘 개발)

  • Yoon, Youngmin;Jeong, Yonghwan;Lee, Jongmin;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.11-16
    • /
    • 2019
  • This paper suggests an algorithm for detecting fault of longitudinal controller in autonomous vehicles. Guaranteeing safety in fault situation is essential because electronic devices in vehicle are dependent each other. Several methods like alarm to driver, ceding control to driver, and emergency stop are considered to cope with fault. This research investigates the fault monitoring process in fail-safe system, for controller which is responsible for accelerating and decelerating control in vehicle. Residual is computed using desired acceleration control command and actual acceleration, and detection of its abnormal increase leads to the decision that system has fault. Before computing residual for controller, health monitoring process of acceleration signal is performed using hardware and analytic redundancy. In fault monitoring process for controller, a process model which is fitted using driving data is considered to improve the performance. This algorithm is simulated via MATLAB tool to verify performance.

Power System Fault Monitoring System using Wavelelet Transform and GPS for Accurate Time Synchronization (웨이블릿 변환과 GPS 정밀시각동기를 이용한 전력계통 고장점 모니터링 시스템에 관한 연구)

  • Kim, Gi-Taek;Kim, Hyuck-Soo;Choi, Jung-Yong
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.105-110
    • /
    • 2001
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paler describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

Condition Monitoring in a Gear with Initial Pitting Using Phase Map of Wavelet Transform (웨이블렛 변환의 위상 지도를 이용한 초기 피팅 결함을 갖는 기어의 상태 감시)

  • 심장선;이상권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.590-595
    • /
    • 2001
  • Vibration transient generated by developing localized fault in gear can be used as indicators of condition monitoring in a gear. In this paper, we propose the phase map for a fault signal using continuous wavelet transform to detect this vibration transient. Local fault induces the abrupt fluctuation of load exciting tooth and phase lag in the vibration signal measured on the gearbox. The relatively large fault like "tip breakage" easily can be detected by the clear fluctuation of exciting load. However, minor fault like "initial pitting" cannot be detected using the load fluctuation. To detect this kind of minor fault, the phase map for a fault signal is taken into account. The phase lag by minor fault is observed well in the phase map.

  • PDF

The Monitoring System of Photovoltaic Module using Fault Diagnosis Sensor (태양전지 모듈 고장진단센서를 이용한 모니터링 시스템)

  • Park, Yuna;Kang, Gihwan;Ju, Youngchul;Kim, Soohyun;Ko, Sukwhan;Jang, Gilsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.91-100
    • /
    • 2016
  • This paper proposes the PV module fault diagnosis sensor which is applied to Zigbee wireless network, and monitoring system using the developed sensor. It is designed with embedded sensor in junction box. The diagnosis elements for algorithm were voltage and temperature. For that reason, It is able to reduce the price and separate the fault of bypass diode from shading differently from other monitoring systems. This fault diagnosis algorithm verified through the Field-installed operations of PV module.

Neural Network-Based Sensor Fault Diagnosis in the Gas Monitoring System (가스모니터링 시스템에서의 신경회로망 기반 센서고장진단)

  • Lee, In-Soo;Cho, Jung-Hwan;Shim, Chang-Hyun;Lee, Duk-Dong;Jeon, Gi-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, we propose neural network-based fault diagnosis method to diagnose of sensor in the gas monitoring system. In the proposed method, using thermal modulation of operating temperature of sensor, the signal patterns are extracted from the voltage of load resistance. Also, ART2 neural network is used for fault isolation. The performance and effectiveness of the proposed ART2 neural network based fault diagnosis method are shown by simulation results using real data obtained from the gas monitoring system.

A Study on the Status Monitoring and Fault Analysis of the Switching Rectifier for Power Factor Correction (역률개선용 스위칭 정류기의 데이터 수집과 저장에 관한 연구)

  • Ahn, Tae-Young;Im, Bum-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.49-56
    • /
    • 2016
  • In this paper, a prototype of power supply with a power factor correction is proposed. As a unique feature the proposed power supply, a status monitoring circuit is embedded on the switching power supply. The status monitoring circuit analyzes the functionality of the system and saves the key components of the power supply in the case of malfunctions. The results of various fault tests are reported to verify the operation and performance of the proposed method. This paper discusses the experimental results of the monitoring module and provides the technical information to monitor, predict, and troubleshoot the system against the potential failure of power supplies for real applications.

Condition Monitoring and Fault Diagnosis System of Rotating Machinery (회전기기의 상태감시 및 결함탐지 시스템)

  • Jeong, Sung-Hak;Lee, Young-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.819-820
    • /
    • 2016
  • Electrical power distribution is consists of high voltage, low voltage and motor control center(MCC). Motor control centers involves turning the motor on and off, it is configured electronic over current relay to detect a motor overcurrent flows. Existing electronic over current relay detects electrical fault such as overcurrent, undercurrent, phase sequence, negative sequence current, current unbalance and earth fault. However, it is difficult to detect mechanical fault such as locked rotor, motor stator and rotor and bearing fault. In this paper, we propose a condition monitoring and fault diagnosis system for electrical and mechanical fault detection of rotating machinery. The proposed system is designed with signal input and control part, system interface part and data acquisition board for condition monitoring and fault diagnosis, it was possible to detect electrical fault and mechanical fault through measurement and control of insulation resistance, locked rotor, MC counter and bearing temperature.

  • PDF

Feature Extraction of Partial Discharge for Stator Winding of High Voltage Motor (고압전동기 고정자권선의 부분방전 특징추출)

  • Park, Jae-Jun;Kim, Hee-Dong;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.112-116
    • /
    • 2004
  • On-line monitoring of fault discharge is an important approach for indicating the condition of electrical insulation of stator winding in high voltage motor. In this paper, several key aspects of on-line monitoring system are discussed, involving the characteristics of fault discharge of stator winding in high voltage motor, spectrum analysis of four simulation fault signals, feature extraction of internal fault discharge from apply voltage to breakdown. The study of the partial discharge activities allows to highlight the ageing stage in the winding fault under test. During the life of the winding insulation fault, the shape of PD signal change relating to the ageing stage. The ageing of stator winding insulation fault of high voltage motor is investigated based on the characteristics of partial discharge pulse distribution and statistical parameters, such as maximum, skewness and kurtosis using discrete wavelet transform coefficients.

  • PDF

Site Monitoring System of Earthquake, Fault and Slope for Nuclear Power Plant Sites (원자력발전소의 부지감시시스템의 운영과 활용)

  • Park, Donghee;Cho, Sung-il;Lee, Yong Hee;Choi, Weon Hack;Lee, Dong Hun;Kim, Hak-sung
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.185-201
    • /
    • 2018
  • Nuclear power plants(NPP) are constructed and operated to ensure safety against natural disasters and man-made disasters in all processes including site selection, site survey, design, construction, and operation. This paper will introduce a series of efforts conducted in Korea Hydro and Nuclear Power Co. Ltd., to assure the safety of nuclear power plant against earthquakes and other natural hazards. In particular, the present status of the earthquake, fault, and slope safety monitoring system for nuclear power plants is introduced. A earthquake observatory network for the NPP sites has been built up for nuclear safety and providing adequate seismic design standards for NPP sites by monitoring seismicity in and around NPPs since 1999. The Eupcheon Fault Monitoring System, composed of a strainmeter, seismometer, creepmeter, Global Positioning System, and groundwater meter, was installed to assess the safety of the Wolsung Nuclear Power Plant against earthquakes by monitoring the short- and long-term behavioral characteristics of the Eupcheon fault. Through the analysis of measured data, it was verified that the Eupcheon fault is a relatively stable fault that is not affected by earthquakes occurring around the southeastern part of the Korean peninsula. In addition, it was confirmed that the fault monitoring system could be very useful for seismic safety analysis and earthquake prediction study on the fault. K-SLOPE System for systematic slope monitoring was successfully developed for monitoring of the slope at nuclear power plants. Several kinds of monitoring devices including an inclinometer, tiltmeter, tension-wire, and precipitation gauge were installed on the NPP slope. A macro deformation analysis using terrestrial LiDAR (Light Detection And Ranging) was performed for overall slope deformation evaluation.