• 제목/요약/키워드: fault diagnostics

검색결과 72건 처리시간 0.038초

스마트 무인기 추진시스템의 주요 구성품 손상 탐지에 관한 연구 (A Study on Fault Detection of Main Component for Smart UAV Propulsion system)

  • 공창덕;김주일;기자영;고성희;최인수;이창호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.281-284
    • /
    • 2006
  • PW206C 터보 축 엔진을 위해 신경회로망을 이용한 지능형 성능 진단 프로그램이 제안되었다. 이 엔진은 항공우주연구원에서 개발 중에 있는 틸트 로터 타입 스마트 무인기의 추진시스템으로 선정되었다. 스마트 무인기 추진시스템에서 계측되는 성능변수는 가스발생기 회전속도, 동력터빈 회전속도, 배기가스 온도, 토크 등 4개이다. 그러나 이러한 4개 계측변수로는 각 구성품의 손상 진단이 어려운 관계로 압축기 출구 압력 및 압축기 터빈 출구 온도를 포함한 6개의 계측변수를 진단에 이용하였다. 구성품 성능저하량을 판단하는 성능파라미터는 압축기, 압축기 터빈, 동력 터빈의 유량함수 및 효율이다. 신경망을 훈련하고 테스트하기 위한 데이터베이스는 가스터빈 성능모사 프로그램을 이용하여 구성하였다. 훈련된 신경망을 PW206C 터보 축 엔진의 진단에 적용한 결과 제안된 진단 알고리즘이 압축기 오염과 압축기 터빈의 침식과 같은 단일 손상을 탐지하는데 유용함을 확인하였다.

  • PDF

원격 자동차 고장 진단 시스템 개발에 대한 연구 (A study on Development of Remote Vehicle Fault Diagnostic System)

  • 라이오넬;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.224-227
    • /
    • 2015
  • 일반적으로 자동차드라이버의 스마트폰을 통한 데이터전송은 자동차운전자의 핸드폰은 데이터를 실시간으로 원격데이터 센터에 전송하는 경우에 용량 의존적인 순위를 가지고 있다. 생성되는 진단보드 데이터들은 드라이버의 폰에서의 모바일 진단 어플리케이션에 임시적으로 저장하고, 인터넷에 연결 되었을 때 데이터 센터에 전송한다. 클라우드에서 실행에 방해하는 다른 태스크들이 없는 원격 자동차 어플리케이션 사용방법을 위한 node.js는 모바일 네트워크을 통한 클라우드에서 데이터 저장업무를 다루기 위하여 적합하다. 우리는 외부 어플리케이션으로부터 driver inputs and delivers output을 패스하는 원격 유저와 운용하는 스마트폰 어플리케이션에서 자동차와의 어플리케이션 interface 방법을 사용하는 실시간 분석 안드로이드 어플리케이션 반응을 시뮬레이션 통해 제안된 아키텍쳐의 유효성을 입증한다. 이 논문에서, 우리는 이벤트 루프 접근을 기반으로 하는 이것은 웹서버 구조를 특징으로 하는 원격 자동차 결함 진단 시스템 연구를 제안한다.

  • PDF

Decision Tree with Optimal Feature Selection for Bearing Fault Detection

  • Nguyen, Ngoc-Tu;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.101-107
    • /
    • 2008
  • In this paper, the features extracted from vibration time signals are used to detect the bearing fault condition. The decision tree is applied to diagnose the bearing status, which has the benefits of being an expert system that is based on knowledge history and is simple to understand. This paper also suggests a genetic algorithm (GA) as a method to reduce the number of features. In order to show the potentials of this method in both aspects of accuracy and simplicity, the reduced-feature decision tree is compared with the non reduced-feature decision tree and the PCA-based decision tree.

자기조직화특징지도와 학습벡터양자화를 이용한 회전기계의 이상진동진단 알고리듬 (Abnormal Vibration Diagnostics Algorithm of Rotating Machinery Using Self-Organizing Feature Map nad Learing Vector Quantization)

  • 양보석;서상윤;임동수;이수종
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.331-337
    • /
    • 2000
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.

  • PDF

Fault Diagnosis of Equipment of Wastewater Treatment Plants by Vibration Signal Analysis Using Time-Series Data Mining

  • Choi, Dae-Won;Bae, Hyeon;Chun, Seung-Pyo;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2192-2197
    • /
    • 2005
  • This paper describes how to diagnose SBR plant equipment using time-series data mining. It shows the equipment diagnostics based upon vibration signals that are acquired from each device for process control. Data transform techniques including two data preprocessing skills and data mining methods were employed in the data analysis. The proposed method is not only suitable for SBR equipment, but is also suitable for other industrial devices. The experimental results performed on a lab-scale SBR plant show a good equipment-management performance.

  • PDF

SVM기법을 이용한 진동계의 고장진단에 관한 연구 (Abnormal Diagnostics of Vibration System using SVM)

  • 고광원;오용설;정근용;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.932-937
    • /
    • 2003
  • When oil pressure of damper is lost or relative stiffness of spring drops in vibration system, it can be fatally dangerous situation. A fault diagnosis method for vibration system using Support Vector Machine(SVM)is suggested in the paper. SVM is used to classify input data or applied to function regression. System status can be classified by judging input data based on optimal separable hyperplane obtained using SVM which learns normal and abnormal status. It is learned from the relationship of system state variables in term of spring, mass and damper. Normal and abnormal status are learned using phase plane as in put space, then the learned SVM is used to construct algorithm to predict the system status quantitatively

  • PDF

Process fault diagnostics using the integrated graph model

  • Yoon, Yeo-Hong;Nam, Dong-Soo;Jeong, Chang-Wook;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1705-1711
    • /
    • 1991
  • On-line fault detection and diagnosis has an increasing interest in a chemical process industry, especially for a process control and automation. The chemical process needs an intelligent operation-aided workstation which can do such tasks as process monitoring, fault detection, fault diagnosis and action guidance in semiautomatic mode. These tasks can increase the performance of a process operation and give merits in economics, safety and reliability. Aiming these tasks, series of researches have been done in our lab. Main results from these researches are building appropriate knowledge representation models and a diagnosis mechanism for fault detection and diagnosis in a chemical process. The knowledge representation schemes developed in our previous research, the symptom tree model and the fault-consequence digraph, showed the effectiveness and the usefulness in a real-time application, of the process diagnosis, especially in large and complex plants. However in our previous approach, the diagnosis speed is its demerit in spite of its merits of high resolution, mainly due to using two knowledge models complementarily. In our current study, new knowledge representation scheme is developed which integrates the previous two knowledge models, the symptom tree and the fault-consequence digraph, into one. This new model is constructed using a material balance, energy balance, momentum balance and equipment constraints. Controller related constraints are included in this new model, which possesses merits of the two previous models. This new integrated model will be tested and verified by the real-time application in a BTX process or a crude unit process. The reliability and flexibility will be greatly enhanced compared to the previous model in spite of the low diagnosis speed. Nexpert Object for the expert system shell and SUN4 workstation for the hardware platform are used. TCP/IP for a communication protocol and interfacing to a dynamic simulator, SPEEDUP, for a dynamic data generation are being studied.

  • PDF

Bearing Fault Diagnosis Using Fuzzy Inference Optimized by Neural Network and Genetic Algorithm

  • Lee, Hong-Hee;Nguyen, Ngoc-Tu;Kwon, Jeong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.353-357
    • /
    • 2007
  • The bearing diagnostics method is presented in this paper using fuzzy inference based on vibration data. Both time-domain and frequency-domain features are used as input data for bearing fault detection. The Adaptive Network based Fuzzy Inference System (ANFIS) and Genetic Algorithm (GA) have been proposed to select the fuzzy model input and output parameters. Training results give the optimized fuzzy inference system for bearing diagnosis based on measured vibration data. The result is also tested with other sets of bearing data to illustrate the reliability of the chosen model.

Development of Software For Machinery Diagnostics by Adaptive Noise Cancelling Method (1St: Cepstrum Analysis)

  • Lee, Jung-Chul;Oh, Jae-Eung;Yum, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.836-841
    • /
    • 1987
  • Many kinds of conditioning monitoring technique have been studied, so this study has investigated the possibility of checking the trend in the fault diagnosis of ball bearing, one of the elements of rotating machine, by applying the cepstral analysis method using the adaptive noise cancelling (ANC) method. And computer simulation is conducted in oder to identify obviously the physical meaning of ANC. The optimal adaptation gain in adaptive filter is estimated, the performance of ANC according to the change of the signal to noise ratio and convergence of LMS algorithm is considered by simulation. It is verified that cepstral analysis using ANC method is more effective than the conventional cepstral analysis method in bearing fault diagnosis.

  • PDF