• Title/Summary/Keyword: fault diagnosis system

Search Result 838, Processing Time 0.031 seconds

A study in fault detection and diagnosis of induction motor by clustering and fuzzy fault tree (클러스터링과 fuzzy fault tree를 이용한 유도전동기 고장 검출과 진단에 관한 연구)

  • Lee, Seong-Hwan;Shin, Hyeon-Ik;Kang, Sin-Jun;Woo, Cheon-Hui;Woo, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.123-133
    • /
    • 1998
  • In this paper, an algorithm of fault detection and diagnosis during operation of induction motors under the condition of various loads and rates is investigated. For this purpose, the spectrum pattern of input currents is used in monitoring the state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrum patterns caused by faults are detected. For the diagnosis of the fault detected, a fuzzy fault tree is designed, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, is solved. The solution of the fuzzy relation equation shows the possibility of occurence of each fault. The results obtained are summarized as follows : (1) Using clustering algorithm by unsupervised learning, an on-line fault detection method unaffected by the characteristics of loads and rates is implemented, and the degree of dependency for experts during fault detection is reduced. (2) With the fuzzy fault tree, the fault diagnosis process become systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF

Open Fault Diagnosis Method for Five-Phase Induction Motor Driving System (5상 유도전동기 구동 시스템을 위한 인버터의 개방고장진단 방법)

  • Baek, Seung-Koo;Shin, Hye-Ung;Kang, Seong-Yun;Park, Choon-Soo;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.304-310
    • /
    • 2016
  • This paper proposes a fault diagnosis method for an open-fault in inverter driving five-phase induction motor. The five-phase induction motor has a high output torque and small torque ripple in comparison to three-phase. The best advantage of the five-phase induction motor is fault diagnosis and tolerant control using redundancy of phases. This paper uses an inverter as a power converter for driving a five-phase induction motor. If a switch of inverter occurs to the open-fault, this problem is the influence on the output current and output torque. To solve this problem, there is need of an accurate diagnosis and fault switch distinction. Therefore, this paper propose a fault detection method of the open-fault switches for the fault diagnosis. First, analyzing the pattern for the open-circuit fault of one phase. next, analyzing the pattern for the open-circuit fault of each inverter switches. Through the pattern analysis, It defines the scope of each of the failure switch. Thereafter, By using an algorithm that proposes to perform a fault diagnosis method. The proposed algorithm is verified from the experiment with the 1.5 kW five-phase induction motor.

Review of expert system applications to chemical process fault diagnosis (화학공정 결함진단을 위한 전문가 시스템 적용에 관한 고찰)

  • 오전근;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.674-679
    • /
    • 1987
  • Process failures can occur at any time during operation, so a continuous effort of fault detection, diagsis, and correction is required. Expert system paridigm has been regarded as a promising approach to real time process supervisory control especially to fault diagnosis. The most important aspects of fault diagnostic expert systems(FDES) are the problem-solving inference strategy and knowledge organizations. The necessity of FDES, the nature of diagnostic knowledge, the representation of knowledge, and the inference mechanism of FDES, et al. are described, which are announced by previous researchers. And the existing FDES are categorized and critically reviewed in this work.

  • PDF

Neural Network-Based Sensor Fault Diagnosis in the Gas Monitoring System (가스모니터링 시스템에서의 신경회로망 기반 센서고장진단)

  • Lee, In-Soo;Cho, Jung-Hwan;Shim, Chang-Hyun;Lee, Duk-Dong;Jeon, Gi-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, we propose neural network-based fault diagnosis method to diagnose of sensor in the gas monitoring system. In the proposed method, using thermal modulation of operating temperature of sensor, the signal patterns are extracted from the voltage of load resistance. Also, ART2 neural network is used for fault isolation. The performance and effectiveness of the proposed ART2 neural network based fault diagnosis method are shown by simulation results using real data obtained from the gas monitoring system.

Fault Diagnosis of the Nonlinear Systems Using Neural Network-Based Multi-Fault Models (신경회로망기반 다중고장모델에 의한 비선형시스템의 고장진단)

  • 이인수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.115-118
    • /
    • 2001
  • In this paper we propose an FDI(fault detection and isolation) algorithm using neural network-based multi-fault models to detect and isolate single faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output.

  • PDF

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.

A study on the fault diagnosis in the power system using Neural Network (신경회로망을 이용한 전력계통의 고장진단에 관한 연구)

  • Park, June-Ho;Choi, June-Hyug;Lee, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.43-46
    • /
    • 1991
  • When a fault is occurred in Power System, relay system detect overcurrent or voltage drop and trip the circuit breaker. Then, an operator in the control room diagnoses the fault and start the recovery of the system after analyzing the alarm information of relays or circuit breakers. The alarm informations have different patterns for each fault of the electric equipments on lines in power systems. In this paper, Back propagation algorithm is applied to train for many kinds of the fault in the power system. The simulation results show the possibility of the neural network application for the fault diagnosis in the case of errorous operation as well as normal operation of relays or circuit breakers.

  • PDF

A Study on the Generation and Fault diagnosis Expert System for Operator Training in Power System (조작원 훈련을 위한 전력계토의 사고모의 및 고장진단 전문가 시스템의 연구)

  • 이흥재;박영문;임찬호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.564-569
    • /
    • 1994
  • This paper presents an expert system for the fault section estimation and fault diagnosis in power transmission systems, which also has random event generation function for the purpose of operator training or educational experiment. The expert system is developed using an artificial intelligence language.

Fault diagnostic system for rotating machine based on Wavelet packet transform and Elman neural network

  • Youk, Yui-su;Zhang, Cong-Yi;Kim, Sung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.178-184
    • /
    • 2009
  • An efficient fault diagnosis system is needed for industry because it can optimize the resources management and improve the performance of the system. In this study, a fault diagnostic system is proposed for rotating machine using wavelet packet transform (WPT) and elman neural network (ENN) techniques. In most fault diagnosis for mechanical systems, WPT is a well-known signal processing technique for fault detection and identification. In previous work, WPT can improve the continuous wavelet transform (CWT) used over a longer computing time and huge operand. It can also solve the frequency-band disagreement by discrete wavelet transform (DWT) only breaking up the approximation version. In the experimental work, the extracted features from the WPT are used as inputs in an Elman neural network. The results show that the scheme can reliably diagnose four different conditions and can be considered as an improvement of previous works in this field.

Image recognition technology in rotating machinery fault diagnosis based on artificial immune

  • Zhu, Dachang;Feng, Yanping;Chen, Qiang;Cai, Jinbao
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • By using image recognition technology, this paper presents a new fault diagnosis method for rotating machinery with artificial immune algorithm. This method focuses on the vibration state parameter image. The main contribution of this paper is as follows: firstly, 3-D spectrum is created with raw vibrating signals. Secondly, feature information in the state parameter image of rotating machinery is extracted by using Wavelet Packet transformation. Finally, artificial immune algorithm is adopted to diagnose rotating machinery fault. On the modeling of 600MW turbine experimental bench, rotor's normal rate, fault of unbalance, misalignment and bearing pedestal looseness are being examined. It's demonstrated from the diagnosis example of rotating machinery that the proposed method can improve the accuracy rate and diagnosis system robust quality effectively.