• Title/Summary/Keyword: fault detection

Search Result 1,632, Processing Time 0.035 seconds

Fault Detection and Reconstruction for Descriptor Systems with Actuator and Sensor Faults

  • Yeu, Tae-Kyeong;Matsunaga, Nobutomo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2582-2587
    • /
    • 2003
  • This paper proposes an application of sliding mode observer to the problem of fault detection and reconstruction for descriptor systems with both actuator and sensor faults. In detecting and reconstructing the faults simultaneously, first, we will consider the fault detection problem for sensor fault. The detection of sensor fault is achieved from the design of the matrix which eliminates the influence of actuator fault. Secondly, the sliding mode observer which adds the general full-order observer for descriptor system to feedforward injection map and feedforward compensation signal is designed, and through which the sensor fault is reconstructed. Finally, with the reconstructed sensor fault, and by eliminating differential term of the sensor fault, the actuator fault is detected and reconstructed.

  • PDF

Application of the fault detection filter to detect the dynamic faults of a two-motor driven electric vehicle system (Detection Filter를 적용한 two-motor구동방식 전기자동차의 고장감지에 관한 연구)

  • 김병기;장태규;박정우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.341-344
    • /
    • 1997
  • This paper presents a dynamics failure detection algorithm developed for the two-motor-driven electric vehicle system. The algorithm is based on the application of the fault detection filter. The fault detection includes the identification of sudden pressure drops of the two rear tires in driving axis and dynamics faults of the two inverter-motor-paired actuators An E.V. dynamics simulator is developed, which includes the modeling of the E.V. dynamics as well as the driving dynamics. The simulator, which allows the generation of various fault situations, is utilized in the verification of the developed fault detection algorithm. The results of the simulations are also presented.

  • PDF

Fault detection and identification for a robot used in intelligent manufacturing (IMS용 로봇에서의 FDI기법 연구)

  • 이상길;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1489-1492
    • /
    • 1997
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square distribution is applied fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

Fault Detection and Identification for a Robot used in Intelligent Manufacturing (IMS용 로봇의 고장진단기법에 관한 연구)

  • 이상길;송택렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.666-673
    • /
    • 1998
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square test and GLR(General likelihood ratio) test are applied for fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

A Process Fault Detection Filter Design by Fault Vector Modelling Approach and an Application (고장벡터 모델링에 위한 프로세스 고장 검출필터의 설계 및 응용)

  • 이기상;배상욱
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.430-436
    • /
    • 1987
  • A Detection filter that can be used for the Detection and Isolation of process faults is proposed by the use of fault vector modelling, and is applied to DC Motor fault detection. The proposed detection filter is a new one in a view point that its outputs are the estimates of fault variables(or linear combination of them) while all the existing filters estimate the state of process. By this properties, the process fault detection systems with this filter can be constructed in very simple structure. Besides the simplicity of structure and design procedure, the filter has an useful feature that various types of fault can be estimated via the filter by choosing appropriate fault models.

  • PDF

An Architecture-based Multi-level Self-Adaptive Monitoring Method for Software Fault Detection (소프트웨어 오류 탐지를 위한 아키텍처 기반의 다계층적 자가적응형 모니터링 방법)

  • Youn, Hyun-Ji;Park, Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.568-572
    • /
    • 2010
  • Self-healing is one of the techniques that assure dependability of mission-critical system. Self-healing consists of fault detection and fault recovery and fault detection is important first step that enables fault recovery but it causes overhead. We can detect fault based on model, the detection tasks that notify system's behavior and compare normal behavior model and system's behavior are heavy jobs. In this paper, we propose architecture-based multi-level self-adaptive monitoring method that complements model-based fault detection. The priority of fault detection per component is different in the software architecture. Because the seriousness and the frequency of fault per component are different. If the monitor is adapted to intensive to the component that has high priority of monitoring and loose to the component that has low priority of monitoring, the overhead can be decreased and the efficiency can be maintained. Because the environmental changes of software and the architectural changes bring the changes at the priority of fault detection, the monitor learns the changes of fault frequency and that is adapted to intensive to the component that has high priority of fault detection.

On the Fault Detection and Isolation Systems using Functional Observers (함수 관측자를 이용한 고장검출식별기법에 관한 연구)

  • Lee, Kee-Sang;Ryu, Ji-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.883-890
    • /
    • 2003
  • Two GOS (Generalized Observer Scheme) type Fault Detection Isolation Schemes (FDIS), employing the bank of unknown input functional observers (UIFO) as a residual generator, are proposed to make the practical use of the multiple observer based FDIS. The one is IFD (Instrument Fault Detection) scheme and the other is PFD (Process Fault Detection) scheme. A design method of UIFO is suggested for robust residual generation and reducing the size of the observer bank. Several design objectives that can be achieved by the FDI schemes and the design methods to meet the objectives are described. An IFD system is constructed for the Boeing 929 Jetfoil boat system to show the effectiveness of the propositions. Major contributions of this paper are two folds. Firstly, the proposed UIFO approaches considerably reduce the size of residual generator in the GOS type FDI systems. Secondly, the FDI schemes, in addition to the basic functions of the conventional observer-based FDI schemes, can reconstruct the failed signal or give the estimates of fault magnitude that can be used for compensating fault effects. The schemes are directly applicable to the design of a fault tolerant control systems.

Fault Symptom Analysis and Diagnosis for a Single-Effect Absorption Chiller (흡수식 냉동시스템의 고장현상 분석과 진단)

  • Han, Dongwon;Chang, Young-Soo;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.587-595
    • /
    • 2015
  • In this study, fault symptoms were simulated and analyzed for a single-effect absorption chiller. The fault patterns of fault detection parameters were tabulated using the fault symptom simulation results. Fault detection and diagnosis by a process history-based method were performed for the in-situ experiment of a single-effect absorption chiller. Simulated fault modes for the in-situ experimental study are the decreases in cooling water and chilled water mass flow rates. Five no-fault reference models for fault detection of a single-effect absorption chiller were developed using fault-free steady-state data. A sensitivity analysis of fault detection using the normalized distance method was carried out with respect to fault progress. When mass flow rates of the cooling and chilled water decrease by more than 19.3% and 17.8%, respectively, the fault can be detected using the normalized distance method, and COP reductions are 6.8% and 4.7%, respectively, compared with normal operation performance. The pattern recognition method for fault diagnosis of a single-effect absorption chiller was found to indicate each failure mode accurately.

Model-based Fault Diagnosis Applied to Vibration Data (진동데이터 적용 모델기반 이상진단)

  • Yang, Ji-Hyuk;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1090-1095
    • /
    • 2012
  • In this paper, we propose a model-based fault diagnosis method applied to vibration data. The fault detection is performed by comparing estimated parameters with normal parameters and deciding if the observed changes can be explained satisfactorily in terms of noise or undermodelling. The key feature of this method is that it accounts for the effects of noise and model mismatch. And we aslo design a classifier for the fault isolation by applying the multiclass SVM (Support Vector Machine) to the estimated parameters. The proposed fault detection and isolation methods are applied to an engine vibration data to show a good performance. The proposed fault detection method is compared with a signal-based fault detection method through a performance analysis.

A Study on Actuator Fault Detection and Isolation in Airplanes using Fuzzy Logic (퍼지로직을 이용한 항공기 고장 검출 및 분리)

  • Lee Jang-Ho;Kim You-Dan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.140-148
    • /
    • 2004
  • Fault detection and isolation(FDI) and reconfigurable flight control system provide better survivability even though actuator faults occur. In this study, a new fault detection and isolation algorithm is proposed using fuzzy logic. When the FDI system detects the actuator fault, the fuzzy logic investigates the state variables to find which actuator has fault. Proposed fuzzy detection algorithm detect not only a single fault but also multiple faults. After detecting the fault, the reconfigurable flight control system begins operating for compensating the effects of the fault. A numerical simulation using six degree-of-freedom nonlinear aircraft model is performed to verity the performance of the proposed fault detection and isolation scheme.